摘要:
Semiconductor devices having metallic source and drain regions are described. For example, a semiconductor device includes a gate electrode stack disposed above a semiconducting channel region of a substrate. Metallic source and drain regions are disposed above the substrate, on either side of the semiconducting channel region. Each of the metallic source and drain regions has a profile. A first semiconducting out-diffusion region is disposed in the substrate, between the semiconducting channel region and the metallic source region, and conformal with the profile of the metallic source region. A second semiconducting out-diffusion region is disposed in the substrate, between the semiconducting channel region and the metallic drain region, and conformal with the profile of the metallic drain region.
摘要:
Semiconductor device stacks and devices made there from having Ge-rich device layers. A Ge-rich device layer is disposed above a substrate, with a p-type doped Ge etch suppression layer (e.g., p-type SiGe) disposed there between to suppress etch of the Ge-rich device layer during removal of a sacrificial semiconductor layer richer in Si than the device layer. Rates of dissolution of Ge in wet etchants, such as aqueous hydroxide chemistries, may be dramatically decreased with the introduction of a buried p-type doped semiconductor layer into a semiconductor film stack, improving selectivity of etchant to the Ge-rich device layers.
摘要:
A device grade III-V quantum well structure and method of manufacture is described. Embodiments of the present invention enable III-V InSb quantum well device layers with defect densities below 1×108 cm−2 to be formed. In an embodiment of the present invention, a delta doped layer is disposed on a dopant segregation barrier in order to confine delta dopant within the delta doped layer and suppress delta dopant surface segregation.
摘要翻译:描述了器件级III-V量子阱结构及其制造方法。 本发明的实施方案能够形成缺陷密度低于1×10 8 cm -3的III-V InSb量子阱器件层。 在本发明的一个实施例中,Δ掺杂层设置在掺杂剂偏析屏障上,以便将δ掺杂剂限制在δ掺杂层内并抑制δ掺杂剂表面偏析。
摘要:
Semiconductor device stacks and devices made there from having Ge-rich device layers. A Ge-rich device layer is disposed above a substrate, with a p-type doped Ge etch suppression layer (e.g., p-type SiGe) disposed there between to suppress etch of the Ge-rich device layer during removal of a sacrificial semiconductor layer richer in Si than the device layer. Rates of dissolution of Ge in wet etchants, such as aqueous hydroxide chemistries, may be dramatically decreased with the introduction of a buried p-type doped semiconductor layer into a semiconductor film stack, improving selectivity of etchant to the Ge-rich device layers.
摘要:
A method for improving the reliability of a high-k gate dielectric layer comprises incorporating a noble metal into a transistor gate stack that contains the high-k gate dielectric layer and annealing the transistor gate stack in a molecular hydrogen or deuterium containing atmosphere. The annealing process drives at least a portion of the molecular hydrogen or deuterium toward the high-k gate dielectric layer. When the molecular hydrogen or deuterium contacts the noble metal, it is converted into atomic hydrogen or deuterium that is able to treat the high-k gate dielectric layer and improve its reliability.
摘要:
Noble metal barrier layers are disclosed. In one aspect, an apparatus may include a substrate, a dielectric layer over the substrate, and an interconnect structure within the dielectric layer. The interconnect structure may have a bulk metal and a barrier layer. The barrier layer may be disposed between the bulk metal and the dielectric layer. The barrier layer may include one or more metals selected from iridium, platinum, palladium, rhodium, osmium, gold, silver, rhenium, ruthenium, tungsten, and nickel.
摘要:
A plurality of metal interconnects incorporating a Group II element alloy for protecting the metal interconnects and methods to form and incorporate the Group II element alloy are described. In one embodiment, a Group II element alloy is used as a seed layer, or a portion thereof, which decreases the line resistance and increases the mechanical strength of a metal interconnect. In another embodiment, a Group II element alloy is used to form a barrier layer, which, in addition to decreasing the line resistance and increasing the mechanical integrity, also increases the chemical integrity of a metal interconnect.
摘要:
A plurality of metal interconnects incorporating a Group II element alloy for protecting the metal interconnects and method to form and incorporate the Group II element alloy are described. In one embodiment, a Group II element alloy is used as a seed layer, or a portion thereof, which decreases the line resistance and increases the mechanical strength of a metal interconnect. In another embodiment, a Group II element alloy is used to form a barrier layer, which, in addition to decreasing the line resistance and increasing the mechanical integrity, also increases the chemical integrity of a metal interconnect.
摘要:
Semiconductor devices having metallic source and drain regions are described. For example, a semiconductor device includes a gate electrode stack disposed above a semiconducting channel region of a substrate. Metallic source and drain regions are disposed above the substrate, on either side of the semiconducting channel region. Each of the metallic source and drain regions has a profile. A first semiconducting out-diffusion region is disposed in the substrate, between the semiconducting channel region and the metallic source region, and conformal with the profile of the metallic source region. A second semiconducting out-diffusion region is disposed in the substrate, between the semiconducting channel region and the metallic drain region, and conformal with the profile of the metallic drain region.