摘要:
A method of forming an interconnect structure and an integrated circuit including the interconnect structure. The method includes: depositing a dielectric layer over a conductive layer; forming an opening in the dielectric layer to expose the conductive layer; forming a barrierless single-phase interconnect comprising a metal or compound having a melting point between a melting point of copper and a melting point of tungsten. Forming includes depositing a layer of metal or compound within the opening and on an upper surface of the dielectric layer Preferably, the barrierless single-phase interconnect comprises cobalt or a cobalt containing compound. Thus, an interconnect structure, including a via and associated line, is made up of a single-phase metal or compound without the use of a different material between the interconnect and the underlying dielectric, thus improving electrical performance and reliability and further simplifying the interconnect formation process.
摘要:
Disclosed are embodiments of a method of forming metal interconnects using a sacrificial layer to protect a seed layer prior to metal gap fill. The sacrificial layer can prevent oxidation of the seed layer and perhaps oxygen migration to an underlying barrier layer. Other embodiments are described and claimed.
摘要:
A device and method of forming fluoride metal barriers at an interface of a fluorinated low-K dielectric and Cu or Cu alloy interconnects is disclosed. The fluoride metal barriers may prevent interconnects from reacting with the fluorinated low-K dielectric. The method may include depositing a thin film of metal or metal alloy on the fluorinated low-K dielectric. The thin film may include a metal or metal alloying element that reacts with free fluorine and/or fluorine compounds from the fluorinated low-K dielectric to form fluoride metal barriers.
摘要:
Electrical interconnects for integrated circuits and methods of fabrication of interconnects are provided. Devices are provided comprising copper interconnects having metallic liner layers comprising silver and a second component, such as, lanthanum, titanium, tungsten, zirconium, antimony, or calcium. Methods include providing a substrate having a trench or via formed therein, forming a silver alloy layer, comprising silver and a second component selected from the group consisting of lanthanum, titanium, tungsten, zirconium, antimony, and calcium, onto surfaces of the feature, depositing a copper seed layer, and depositing copper into the feature.
摘要:
A metal interconnect comprising cobalt and method of forming a metal interconnect comprising cobalt are described. In an embodiment, a metal interconnect comprising cobalt includes a dielectric layer disposed on a substrate, an opening formed in the dielectric layer such that the substrate is exposed. The embodiment further includes a seed layer disposed over the substrate and a fill material comprising cobalt formed within the opening and on a surface of the seed layer.
摘要:
A metal interconnect comprising cobalt and method of forming a metal interconnect comprising cobalt are described. In an embodiment, a metal interconnect comprising cobalt includes a dielectric layer disposed on a substrate, an opening formed in the dielectric layer such that the substrate is exposed. The embodiment further includes a seed layer disposed over the substrate and a fill material comprising cobalt formed within the opening and on a surface of the seed layer.
摘要:
Techniques are disclosed that enable interconnects, vias, metal gates, and other conductive features that can be formed through electroless material deposition techniques. In some embodiments, the techniques employ electroless fill in conjunction with high growth rate selectivity between an electroless nucleation material (ENM) and electroless suppression material (ESM) to generate bottom-up or otherwise desired fill pattern of such features. Suitable ENM may be present in the underlying or otherwise existing structure, or may be provided. The ESM is provisioned so as to prevent or otherwise inhibit nucleation at the ESM covered areas of the feature which in turn prevents or otherwise slows down the rate of electroless growth on those areas. As such, the electroless growth rate on the ENM sites is higher than the electroless growth rate on the ESM sites.
摘要:
An embodiment of the invention provides a method for reducing within die thickness variations by modifying the concentration of components of a low-acid electroplating solution. For one embodiment, the leveler concentration is increased sufficiently to reduce within die thickness variations to a specified value. For one embodiment of the invention, the leveler and suppressor are increased to reduce within die thickness variations and substantially reduce a plurality of electroplating defects. In such an embodiment the combined concentration of leveler and suppressor is determined to maintain adequate gap fill.
摘要:
Techniques are disclosed that enable interconnects, vias, metal gates, and other conductive features that can be formed through electroless material deposition techniques. In some embodiments, the techniques employ electroless fill in conjunction with high growth rate selectivity between an electroless nucleation material (ENM) and electroless suppression material (ESM) to generate bottom-up or otherwise desired fill pattern of such features. Suitable ENM may be present in the underlying or otherwise existing structure, or may be provided. The ESM is provisioned so as to prevent or otherwise inhibit nucleation at the ESM covered areas of the feature, which in turn prevents or otherwise slows down the rate of electroless growth on those areas. As such, the electroless growth rate on the ENM sites is higher than the electroless growth rate on the ESM sites.
摘要:
A device and method of forming fluoride metal barriers at an interface of a fluorinated low-K dielectric and Cu or Cu alloy interconnects is disclosed. The fluoride metal barriers may prevent interconnects from reacting with the fluorinated low-K dielectric. The method may include depositing a thin film of metal or metal alloy on the fluorinated low-K dielectric. The thin film may include a metal or metal alloying element that reacts with free fluorine and/or fluorine compounds from the fluorinated low-K dielectric to form fluoride metal barriers.