摘要:
A method of fabricating a microelectronic package having a direct contact heat spreader, a package formed according to the method, a die-heat spreader combination formed according to the method, and a system incorporating the package. The method comprises metallizing a backside of a microelectronic die to form a heat spreader body directly contacting and fixed to the backside of the die thus yielding a die-heat spreader combination. The package includes the die-heat spreader combination and a substrate bonded to the die.
摘要:
Methods, techniques, and structures relating to die packaging. In one exemplary implementation, a die package interconnect structure includes a semiconductor substrate and a first conducting layer in contact with the semiconductor substrate. The first conducting layer may include a base layer metal. The base layer metal may include Cu. The exemplary implementation may also include a diffusion barrier in contact with the first conducting layer and a wetting layer on top of the diffusion barrier. A bump layer may reside on top of the wetting layer, in which the bump layer may include Sn, and Sn may be electroplated. The diffusion barrier may be electroless and may be adapted to prevent Cu and Sn from diffusing through the diffusion barrier. Furthermore, the diffusion barrier may be further adapted to suppress a whisker-type formation in the bump layer.
摘要:
Described herein are metal gate electrode stacks including a low resistance metal cap in contact with a metal carbonitride diffusion barrier layer, wherein the metal carbonitride diffusion barrier layer is tuned to a particular work function to also serve as a work function metal for a pMOS transistor. In an embodiment, the work function-tuned metal carbonitride diffusion barrier prohibits a low resistance metal cap layer of the gate electrode stack from migrating into the MOS junction. In a further embodiment of the present invention, the work function of the metal carbonitride barrier film is modulated to be p-type with a pre-selected work function by altering a nitrogen concentration in the film.
摘要:
A wafer having a plurality of dies (also called array chips) on the wafer, the die having an electrode to generate a deprotecting reagent, a working electrode to electrochemically synthesize a material, a confinement electrode adjacent to the working electrode to confine reactive reagents, and a die pad, wherein die pads of the plurality of dies are interconnected on the wafer to electrochemically synthesize the material in parallel on a plurality of working electrodes is disclosed. Also, a method for wafer-scale manufacturing of a plurality of dies and a method for electrochemically synthesizing a material in parallel on a plurality of dies on a wafer are disclosed.
摘要:
Noble metal may be used as a non-oxidizing diffusion barrier to prevent diffusion from copper lines. A diffusion barrier may be formed of a noble metal formed over an adhesion promoting layer or by a noble metal cap over an oxidizable diffusion barrier. The copper lines may also be covered with a noble metal.
摘要:
In one embodiment, a substrate holder comprises a base supporting a substrate that includes a surface having a peripheral region. A cover may be assembled with the base and includes at least one opening exposing only a portion of the surface therethrough. A seal assembly substantially seals a region between the cover and base and further adjacent to the peripheral region of the substrate. An electrode includes at least one contact portion positioned within the region and extending over at least a portion of the peripheral region of the substrate. A compliant member comprises a polymeric material and may be positioned within the region between the at least one contact portion and either the peripheral region of the substrate or the cover. In other embodiments, an electroplating system is disclosed that may employ such a substrate holder.
摘要:
According to one aspect of the invention, a method of constructing an electronic assembly is provided. A layer of metal is formed on a backside of a semiconductor wafer having integrated formed thereon. Then, a porous layer is formed on the metal layer. A barrier layer of the porous layer at the bottom of the pores is thinned down. Then, a catalyst is deposited at the bottom of the pores. Carbon nanotubes are then grown in the pores. Another layer of metal is then formed over the porous layer and the carbon nanotubes. The semiconductor wafer is then separated into microelectronic dies. The dies are bonded to a semiconductor substrate, a heat spreader is placed on top of the die, and a semiconductor package resulting from such assembly is sealed. A thermal interface is formed on the top of the heat spreader. Then a heat sink is placed on top of the thermal interface.
摘要:
An embodiment mitigates one or more of the limiting factors of fabricating polymer ferroelectric memory devices. For example, an embodiment reduces the degradation of the ferroelectric polymer due to the polymer's reaction with, and migration or diffusion of, adjacent metal electrode material. Further, the ferroelectric polymer is exposed to fewer potentially high temperature or high energy processes that may damage the polymer. An embodiment further incorporates an immobilized catalyst to improve the adhesion between adjacent layers, and particularly between the electrolessly plated electrodes and the ferroelectric polymer.
摘要:
A nano-electrode or nano-wire may be etched centrally to form a gap between nano-electrode portions. The portions may ultimately constitute a single electron transistor. The source and drain formed from the electrode portions are self-aligned with one another. Using spacer technology, the gap between the electrodes may be made very small.
摘要:
Described herein are metal gate electrode stacks including a low resistance metal cap in contact with a metal carbonitride diffusion barrier layer, wherein the metal carbonitride diffusion barrier layer is tuned to a particular work function to also serve as a work function metal for a pMOS transistor. In an embodiment, the work function-tuned metal carbonitride diffusion barrier prohibits a low resistance metal cap layer of the gate electrode stack from migrating into the MOS junction. In a further embodiment of the present invention, the work function of the metal carbonitride barrier film is modulated to be p-type with a pre-selected work function by altering a nitrogen concentration in the film.