Abstract:
A method of manufacturing a stacked wafer level package includes: preparing a substrate; forming a conductive layer on the substrate; forming chip connection pads and internal connection pads on the conductive layer; forming solder balls connected to the internal connection pads; mounting a semiconductor chip on the conductive layer to be connected to the chip connection pads; forming a sealing member to seal the solder balls and the semiconductor chip; separating the substrate from the conductive layer; forming a rearrangement wiring layer by etching the conductive layer; forming an external connection on the rearrangement wiring layer; forming contact holes in the sealing member to expose the solder balls; and stacking an electronic component to be electrically connected to the solder balls exposed through the contact holes.
Abstract:
Disclosed herein is an interposer-embedded printed circuit board, including: a substrate including a cavity formed in one side thereof and having a predetermined height in a thickness direction of the substrate; an interposer disposed in the cavity and including a wiring region and an insulating region; and a circuit layer formed in the substrate and including a connection pattern connected with one side of the wiring region. The interposer-embedded printed circuit board is advantageous in that an interposer is embedded in a substrate, so that the thickness of a semiconductor package can be reduced, thereby keeping up with the trend of slimming the semiconductor package.
Abstract:
Provided are a semiconductor chip package and a method of manufacturing the same. The semiconductor chip package includes a semiconductor chip comprising a chip pad, and a rerouting layer disposed on the semiconductor chip and including a metal interconnection electrically connected to the chip pad and a partial oxidation region formed by the oxidation of metal and insulating the metal interconnection.
Abstract:
Disclosed herein are a package substrate and a method of fabricating the same. The package substrate includes a base part that includes a chip, a mold part surrounding the chip, and a connection unit formed inside the mold part to connect the chip to a terminal part formed on the outer surface of the mold part, and a buildup layer that is formed on one surface of the base part on which the terminal part is formed, including the side surfaces of the base part, but includes a circuit layer connected to the terminal part, thereby making it possible to minimize stress applied to chips during a buildup process and easily replace malfunctioning chips.
Abstract:
The present invention relates to a method of manufacturing a wafer level package including the steps of: preparing a substrate wafer including a plurality of pads formed on a bottom surface, a plurality of chips positioned on a top surface, and dicing lines for dividing the chips; forming external connection units on the pads; coating resin on the dicing lines by positioning masks on the substrate wafer to expose only the dicing lines; removing the masks; encapsulating the chips positioned between the resin by coating the chips with encapsulant; removing the resin coated on the dicing lines; and cutting a wafer level package along the dicing lines exposed by removing the resin into units.
Abstract:
The present invention relates to a stacked wafer level package and a method of manufacturing the same. The stacked wafer level package in accordance with the present invention can improve a misalignment problem generated in a stacking process by performing a semiconductor chip mounting process, a rearrangement wiring layer forming process, the stacking process and so on after previously bonding internal connection means for interconnection between stacked electronic components to a conductive layer for forming a rearrangement wiring layer, thereby improving reliability and yield and reducing manufacturing cost.
Abstract:
A method of manufacturing a wafer level package including: preparing a substrate wafer including a plurality of pads formed on a bottom surface, a plurality of chips positioned on a top surface, and dicing lines for dividing the chips; forming external connection units on the pads; coating resin on the dicing lines by positioning masks on the substrate wafer to expose only the dicing lines; removing the masks; encapsulating the chips positioned between the resin by coating the chips with encapsulant and cutting a wafer level package along the dicing lines coated with the resin into units.
Abstract:
The present invention relates to a method of manufacturing a wafer level package including the steps of: preparing a substrate wafer including a plurality of pads formed on a bottom surface, a plurality of chips positioned on a top surface, and dicing lines for dividing the chips; forming external connection units on the pads; coating resin on the dicing lines by positioning masks on the substrate wafer to expose only the dicing lines; removing the masks; encapsulating the chips positioned between the resin by coating the chips with encapsulant; removing the resin coated on the dicing lines; and cutting a wafer level package along the dicing lines exposed by removing the resin into units.
Abstract:
The present invention relates to a stacked wafer level package and a method of manufacturing the same. The stacked wafer level package in accordance with the present invention can improve a misalignment problem generated in a stacking process by performing a semiconductor chip mounting process, a rearrangement wiring layer forming process, the stacking process and so on after previously bonding internal connection means for interconnection between stacked electronic components to a conductive layer for forming a rearrangement wiring layer, thereby improving reliability and yield and reducing manufacturing cost.
Abstract:
Disclosed herein is an interposer-embedded printed circuit board, including: a substrate including a cavity formed in one side thereof and having a predetermined height in a thickness direction of the substrate; an interposer disposed in the cavity and including a wiring region and an insulating region; and a circuit layer formed in the substrate and including a connection pattern connected with one side of the wiring region. The interposer-embedded printed circuit board is advantageous in that an interposer is embedded in a substrate, so that the thickness of a semiconductor package can be reduced, thereby keeping up with the trend of slimming the semiconductor package.