摘要:
A substrate processing apparatus cleaning method that includes: containing a cleaning gas in a reaction tube without generating a gas flow of the cleaning gas in the reaction tube by supplying the cleaning gas into the reaction tube and by completely stopping exhaustion of the cleaning gas from the reaction tube or by exhausting the cleaning gas at an exhausting rate which substantially does not affect uniform diffusion of the cleaning gas in the reaction tube from at a point of time of a period from a predetermined point of time before the cleaning gas is supplied into the reaction tube to a point of time when several seconds are elapsed after starting of supply of the cleaning gas into the reaction tube; and thereafter exhausting the cleaning gas from the reaction tube.
摘要:
Disclosed is a substrate processing apparatus, including: a processing space to provide a space in which a substrate is to be processed; a heating member to heat the processing space; a gas supply member to supply at least first and second processing gases to the processing space; an exhaust member to exhaust an atmosphere in the processing space; and a control member to control at least the gas supply member and the exhaust member such that supply and exhaust of the first and second processing gases are alternately repeated a plurality of times so that the first and second processing gases are not mixed with each other in the processing space when forming a desired film on the substrate, and both the first and second processing gases are supplied to the processing space when coating a surface of an inner wall of the processing space with a desired film.
摘要:
Disclosed is a substrate processing apparatus including: a processing chamber; plural buffer chambers; a first processing gas supply system that supplies a first processing gas to the processing chamber; a second processing gas supply system that supplies a second processing gas to the buffer chambers; a RF power source; plasma-generating electrodes in the buffer chambers; a heating system; and a controller that controls the first and second processing gas supply systems, the power source, and the heating system to expose the substrate having a metal film thereon to the first processing gas, and the second processing gas that is activated in the plural buffer chambers with an application of RF power to the electrodes and that is supplied from the buffer chambers to the processing chamber to form a film on the metal film while heating the substrate to a self-decomposition temperature of the first processing gas or lower.
摘要:
A semiconductor device is produced by providing a reaction chamber with a substrate and sequentially repeating steps of: supplying a first kind of gas into the reaction chamber, exhausting the first kind of gas from the reaction chamber, supplying a second kind of gas into the reaction chamber, and exhausting the second kind of gas from the reaction chamber to process the substrate disposed in the reaction chamber. The first kind of gas is pre-reserved in an intermediate portion of a supply path through which the first kind of gas flows, and is supplied into the reaction chamber with exhaust of the reaction chamber being substantially stopped.
摘要:
Disclosed is a substrate processing method in which a plurality of processing gases are alternately supplied to and exhausted from a processing chamber forming a space in which a substrate or substrates are to be processed to form a desired thin film on the substrate or each of the substrates comprising transferring the substrate or the substrates into the processing chamber, and controlling a supply time of one of the plurality of the processing gases to control an amount of a chemical species which exists in the thin film and the existing amount of which a film stress depends on, thereby controlling the film stress of the thin film.
摘要:
A backup RAM for storing pieces of diagnosis data regardless of the cut-off of an electric power is provided in a portion of a RAM. In cases where the detection of an unusual condition by a throttle sensor or a water temperature sensor is judged by a CPU in a current processing routine, a first checking value indicating that the backup RAM is in a renewing period is stored in a checking region of the backup RAM, and pieces of previous diagnosis data stored in a data access region of the backup RAM in a previous processing routine are copied to a temporary refuge region of the backup RAM. Thereafter, pieces of updated diagnosis data obtained in the current processing routine are stored one by one in the data access region in place of the previous diagnosis data, and a second checking value indicating that the backup RAM is in a renewal finishing period is stored in the checking region. In cases where the first checking data is stored in the checking region when the electric power cut off is again supplied, the previous diagnosis data stored in the temporary refuge region are returned to the data access region and are read out according to a request from a diagnosis checker.
摘要:
Provided is a substrate processing apparatus including: a processing chamber for processing a substrate; a material supply unit for supplying a Si material, an oxidation material and a catalyst into the processing chamber; a heating unit for heating the substrate; and a controller for controlling at least the material supply unit and the heating unit, wherein the controller is configured to control the heating unit to heat the substrate with a first photoresist pattern formed thereon at a processing temperature lower than a deformation temperature of a first photoresist constituting the first photoresist pattern, and to control the material supply unit to alternately supply the silicon-containing material and the catalyst, and alternately supply the oxidation material and the catalyst into the processing chamber in a repeated manner to form on the substrate a thin film having a thickness equal to 5% of one half pitch of the first photoresist pattern.
摘要:
A substrate processing apparatus cleaning method that includes: containing a cleaning gas in a reaction tube without generating a gas flow of the cleaning gas in the reaction tube by supplying the cleaning gas into the reaction tube and by completely stopping exhaustion of the cleaning gas from the reaction tube or by exhausting the cleaning gas at an exhausting rate which substantially does not affect uniform diffusion of the cleaning gas in the reaction tube from at a point of time of a period from a predetermined point of time before the cleaning gas is supplied into the reaction tube to a point of time when several seconds are elapsed after starting of supply of the cleaning gas into the reaction tube; and thereafter exhausting the cleaning gas from the reaction tube.
摘要:
A substrate processing apparatus comprises a reaction chamber which is to accommodate stacked substrates, a gas introducing portion, and a buffer chamber, wherein the gas introducing portion is provided along a stacking direction of the substrates, and introduces substrate processing gas into the buffer chamber, the buffer chamber includes a plurality of gas-supply openings provided along the stacking direction of the substrates, and the processing gas introduced from the gas introducing portion is supplied from the gas-supply openings to the reaction chamber.
摘要:
Disclosed is a producing method of a semiconductor device comprising a first step of supplying a first reactant to a substrate to cause a ligand-exchange reaction between a ligand of the first reactant and a ligand as a reactive site existing on a surface of the substrate, a second step of removing a surplus of the first reactant, a third step of supplying a second reactant to the substrate to cause a ligand-exchange reaction to change the ligand after the exchange in the first step into a reactive site, a fourth step of removing a surplus of the second reactant, and a fifth step of supplying a plasma-excited third reactant to the substrate to cause a ligand-exchange reaction to exchange a ligand which has not been exchange-reacted into the reactive site in the third step into the reactive site, wherein the first to fifth steps are repeated predetermined times.