Abstract:
An electronic device includes a thyristor having an anode, a cathode, a first bipolar transistor disposed on the anode side. A second bipolar transistor is disposed on the cathode side. These two bipolar transistors are nested and connected between the anode and the cathode. A MOS transistor is coupled between the collector region and the emitter region of the second bipolar transistor. The transistor has a gate region connected to the cathode via a resistive semiconductor region incorporating at least a part of the base region of the second bipolar transistor.
Abstract:
An integrated image sensor may include adjacent pixels, with each pixel including an active semiconductor region including a photodiode, an antireflection layer disposed above the photodiode, a dielectric region disposed above the antireflection layer, an optical filter disposed above the dielectric region, and a diffraction grating disposed in the antireflection layer. The diffraction grating includes an array of pads.
Abstract:
A device can be used for compensating bandwidth mismatches of time interleaved analog to digital converters. A processor of the device determines, for each original sample stream, an estimated difference between the time constant of a low pass filter representative of the corresponding converter and a reference time constant of a reference low pass filter, and uses this estimated difference and a filtered stream to correct the original stream and deliver a corrected stream of corrected samples.
Abstract:
A method for loading a program, contained in at least a first memory, into a second memory accessible by an execution unit, in which the program is in a cyphered form in the first memory, a circuit for controlling the access to the second memory is configured from program initialization data, instructions of the program, and at least initialization data being decyphered to be transferred into the second memory after configuration of the circuit.
Abstract:
A MOS transistor including, above a gate insulator, a conductive gate stack having a height, a length, and a width, this stack having a lower portion close to the gate insulator and an upper portion, wherein the stack has a first length in its lower portion, and a second length shorter than the first length in its upper portion.
Abstract:
A method for manufacturing an image sensor, including the successive steps of: forming columns of a semiconductor material; forming one or several pixels at a first end of each of the columns; and deforming the structure so that the second ends of each of the columns come closer to each other or draw away from each other to form a surface in the shape of a polyhedral cap.
Abstract:
A MOS transistor including a U-shaped channel-forming semiconductor region and source and drain regions having the same U shape located against the channel-forming region on either side thereof, the internal surface of the channel-forming semiconductor region being coated with a conductive gate, a gate insulator being interposed.
Abstract:
A method for forming a back-side illuminated image sensor, including the steps of: a) forming, from the front surface, doped polysilicon regions, of a conductivity type opposite to that of the substrate, extending in depth orthogonally to the front surface and emerging into the first layer; b) thinning the substrate from its rear surface to reach the polysilicon regions, while keeping a strip of the first layer; c) depositing, on the rear surface of the thinned substrate, a doped amorphous silicon layer, of a conductivity type opposite to that of the substrate; and d) annealing at a temperature capable of transforming the amorphous silicon layer into a crystallized layer.
Abstract:
A protection device includes a triac and triggering units. Each triggering unit is formed by a MOS transistor configured to operate at least temporarily in a hybrid operating mode and a field-effect diode. The field-effect diode has a controlled gate that is connected to the gate of the MOS transistor.
Abstract:
A method for manufacturing a hybrid SOI/bulk substrate, including the steps of starting from an SOI wafer comprising a single-crystal semiconductor layer called SOI layer, on an insulating layer, on a single-crystal semiconductor substrate; depositing on the SOI layer at least one masking layer and forming openings crossing the masking layer, the SOI layer, and the insulating layer, to reach the substrate; growing by a repeated alternation of selective epitaxy and partial etching steps a semiconductor material; and etching insulating trenches surrounding said openings filled with semiconductor material, while encroaching inwards over the periphery of the openings.