Abstract:
Embodiments of the present invention provide improved microfluidic devices and related apparatus, systems, and methods. Methods are provided for reducing mixing times during use of microfluidic devices. Microfluidic devices and related methods of manufacturing are provided with increased manufacturing yield rates. Improved apparatus and related systems are provided for supplying controlled pressure to microfluidic devices. Methods and related microfluidic devices are provided for reducing dehydration of microfluidic devices during use. Microfluidic devices and related methods are provided with improved sample to reagent mixture ratio control. Microfluidic devices and systems are provided with improved resistance to compression fixture pressure induced failures. Methods and systems for conducting temperature controlled reactions using microfluidic devices are provided that reduce condensation levels within the microfluidic device. Methods and systems are provided for improved fluorescent imaging of microfluidic devices.
Abstract:
A method for preferentially localizing desired molecules within an optical confinement disposed upon a substrate is disclosed. The desired molecules are deposited over the surface of the substrate. The desired molecules that are not within the optical confinement are selectively removed from the surface of the substrate.
Abstract:
A thermal cycler for automatic performance of the polymerase chain reaction is provided. The thermal cycler comprises a heater control that provides close temperature control of the reaction.
Abstract:
System and methods according to exemplary embodiments of the present disclosure utilize a sample holder configured to hold at least one confined single-molecule analyte in a solution of labeled nucleotide bases. Each single-molecule analyte has a single template nucleic acid molecule, an oligonucleotide primer, and/or a single nucleic acid polymerizing enzyme. A least one light source is used to illuminate a detection volume around each confined analyte, and a pulsed source sends a pulsed radiation to the at least one detection volume. The timing of incorporation events at the analytes are controlled by the pulsed radiation, and when multiple analytes are provided on the sample holder, the incorporation events at the analytes can be phase locked and synchronized using the pulsed radiation.
Abstract:
The invention is directed to a method and device for simultaneously testing a sample for the presence, absence, and/or amounts of one or more of a plurality of selected analytes. The invention includes, in one aspect, a device for detecting or quantitating a plurality of different analytes in a liquid sample. Each chamber may include an analyte-specific reagent effective to react with a selected analyte that may be present in the sample, and detection means for detecting the signal. Also disclosed are methods utilizing the device.
Abstract:
The present invention generally relates to the detection of analytes, particularly biomolecules in samples. The invention also relates to compositions, methods, and kits for detecting the presence of analytes, typically in multiplex detection formats. The invention also relates to methods for determining the presence of at least one analyte in a sample, the methods employing employ single molecule detection techniques to individually detect at least one molecular complex or at least part of a molecular complex.
Abstract:
Embodiments of the present invention provide improved microfluidic devices and related apparatus, systems, and methods. Methods are provided for reducing mixing times during use of microfluidic devices. Microfluidic devices and related methods of manufacturing are provided with increased manufacturing yield rates. Improved apparatus and related systems are provided for supplying controlled pressure to microfluidic devices. Methods and related microfluidic devices are provided for reducing dehydration of microfluidic devices during use. Microfluidic devices and related methods are provided with improved sample to reagent mixture ratio control. Microfluidic devices and systems are provided with improved resistance to compression fixture pressure induced failures. Methods and systems for conducting temperature controlled reactions using microfluidic devices are provided that reduce condensation levels within the microfluidic device. Methods and systems are provided for improved fluorescent imaging of microfluidic devices.
Abstract:
The invention is directed to a method and device for simultaneously testing a sample for the presence, presence, and/or amounts of one or more of a plurality of selected analytes. The invention includes, in one aspect, device for detecting or quantitating a plurality of different analytes in a liquid sample. Each chamber may include analyte-specific reagent effective to react with a selected analyte that may be present in the sample, and detection means for detecting the signal. Also disclosed are methods utilizing the device.
Abstract:
The invention is directed to a method and device for simultaneously testing a sample for the presence, absence, and/or amounts of one or more a plurality of selected analytes. The invention includes, in one aspect, a device for detecting or quantitating a plurality of different analytes in a liquid sample. The device includes a substrate which defines a sample-distribution network having (i) a sample inlet, (ii) one or more detection chambers, and (iii) channel means providing a dead-end fluid connection between each of the chambers and the inlet. Each chamber may include an analyte-specific reagent effective to react with a selected analyte that may be present in the sample, and detection means for detecting the signal. Also disclosed are methods utilizing the device.