摘要:
A conductive substrate with a resistance layer comprising a substantially flat high conductivity substrate roughening treated on its surface by a resistance component and provided with a resistance layer by the resistance component so as to enable the interface between the high conductivity substrate and resistance component layer to be substantially flattened, enable acquisition of a thin film resistance layer with a stable resistance after dissolving away the high conductivity substrate, and able to maintain the peel strength with the insulating support, and a resistance board using the same.
摘要:
A plating bath, able to form a resistance layer with a uniform thickness distribution on the roughened surface of a conductive base, including nickel ions and sulfamic acid or its salt as essential components and at least one of phosphoric acid, phosphorous acid, hypophosphorous acid, and salts of the same; a conductive base having a thin resistance layer with a stable resistance, and a resistance circuit board material using the same.
摘要:
A conductive base material with resistance layer provided with roughened conductive base material on the surface of which the resistance layer is formed with uniform thickness distribution, and a resistance circuit board material using the same, wherein electrodeposited copper foil having granular crystals is roughening treated on at least one surface to obtain Rz of not more than 2.5 μm and the resistance layer of Ni alloy layer containing at least 8 to 18 wt % of P is formed on the roughening treated side.
摘要:
An inexpensive conductive base material with a thin film resistance layer having small variation of the sheet resistance value and a conductive base material with a resistance layer enabling production of a printed resistor circuit board by stably leaving behind resistance elements, that is, a conductive base material with a thin film resistance layer comprised of a conductive base material having a resistance layer formed on its surface wherein the resistance layer includes Ni containing P and an amorphous and a crystalloid form are mixed together and a conductive base material with a thin film resistance layer comprised of a conductive base material having a resistance layer formed on its surface wherein the resistance layer is a crystalline thin film resistance layer including Ni containing P.
摘要:
A through-hole type laminated circuit board is given with high reliability of electrical connection using copper foil and conductive paste containing low melting point metal without generating harmful void and crack at boundary between the copper foil and conductive paste metal. The laminated circuit board is made by laminating a multiple number of resin boards with roughening treated copper foils at least on their one surface sides with roughening projection deposition of less than 150 mg/dm2 to make surface roughness Rz of 0.3 to 10 μm and height of the projection to be 0.3 to 10 μm. Surface roughness of the original foil is 0.1 to 5 μm and the amount of copper metal atoms of roughening treated layer is set at 4 times or less than the amount of diffusible conductive paste metal atoms containing low melting point metal into the roughening treated layer on the foil surface.
摘要:
A through-hole type laminated circuit board is given with high reliability of electrical connection using copper foil and conductive paste containing low melting point metal without generating harmful void and crack at boundary between the copper foil and conductive paste metal. The laminated circuit board is made by laminating a multiple number of resin boards with roughening treated copper foils at least on their one surface sides with roughening projection deposition of less than 150 mg/dm2 to make surface roughness Rz of 0.3 to 10 μm and height of the projection to be 0.3 to 10 μm. Surface roughness of the original foil is 0.1 to 5 μm and the amount of copper metal atoms of roughening treated layer is set at 4 times or less than the amount of diffusible conductive paste metal atoms containing low melting point metal into the roughening treated layer on the foil surface.
摘要:
To provide a surface treated electrodeposited copper foil having a smooth M surface with less asperity on the surface instead of an S surface affected by stripes transferred from a surface drum; a surface treatment is performed on the M surface being an opposite surface of a surface which contacted with a drum in an electrodeposited copper foil, wherein Rz is 1.0 μm or smaller and Ra is 0.2 μm or smaller on the M surface, electrodeposited copper plating is performed to produce a copper foil under a condition of using a copper sulfate bath, wherein a copper concentration is 50 to 80 g/l, a sulfuric acid concentration is 30 to 70 g/l, a solution temperature is 35 to 45° C., a chloride concentration is 0.01 to 30 ppm, an adding concentration of a total of an organic sulfur based compound, low molecular weight glue and polymeric polysaccharide is 0.1 to 100 ppm and TOC (total organic carbon) is 400 ppm or smaller, and a current density is 20 to 50 A/dm2, and a surface treatment is performed on an M surface of the copper foil to attain Rz of 1.0 μm or smaller and Ra of 0.2 μm or smaller on the M surface.
摘要:
A surface treated electrodeposited copper foil having a smooth M surface; a surface treatment is performed on the M surface being an opposite surface of a surface which contacted with a drum in an electrodeposited copper foil, wherein Rz is 1.0 μm or smaller and Ra is 0.2 μm or smaller on the M surface, electrodeposited copper plating is performed to produce a copper foil under a condition of using a copper sulfate bath, wherein a copper concentration is 50 to 80 g/l, a sulfuric acid concentration is 30 to 70 g/l, a solution temperature is 35 to 45° C., a chloride concentration is 0.01 to 30 ppm, an adding concentration of a total of an organic sulfur based compound, low molecular weight glue and polymeric polysaccharide is 0.1 to 100 ppm and TOC is 400 ppm or smaller, and a current density is 20 to 50 A/dm2.
摘要:
An object of the present invention is to produce an ultra-thin copper foil with a carrier which has few pinholes and small surface roughness and which has an the thickness of less than 5 μm, and to produce the method of producing the foil, and further to produce a printed circuit board for fine pattern, a multilayer printed circuit board and a chip on film circuit board by using the ultra-thin copper foil with a carrier. The present invention provides an ultra-thin copper foil with a carrier produced by stacking a peeling layer and an ultra thin copper foil in order on the surface of a carrier copper foil which is made smooth so that the mean surface roughness of at least one side is Rz of 0.01 to 2.0 μm by the chemical polishing, the electrochemical dissolution, or the smoothing plating processing method independently, combining two or more, or further combining the mechanical polishing.
摘要:
An ultra-thin copper foil with a carrier having a peeling layer able to withstand even high temperature working in the case of using a high heat resistant resin, enabling the carrier foil and the ultra-thin copper foil to be easily peeled apart, and reduced in the number of pinholes by uniform plating without impairing the peelability of the peeling layer, that is, an ultra-thin copper foil with a carrier comprised of a carrier foil, a peeling layer, and an ultra-thin copper foil, wherein the peeling layer and the ultra-thin copper foil are provided between them with a strike plating layer at the surface on the peeling layer side, an ultra-thin layer of copper is provided on this according to need, and an ultra-thin copper foil comprised of copper or a copper alloy or a phosphorus-containing copper or phosphorus-containing copper alloy is provided. The peeling layer between the carrier foil and the ultra-thin copper foil is chromium, a chromium alloy, a chromium-containing oxide hydrate layer, nickel, iron, or an alloy layer of the same or an oxide hydrate layer of the same.