Abstract:
In some embodiments, the invention involves a die having a first conductor carrying a power supply voltage and a second conductor carrying a ground voltage. A semiconductor capacitor operating in depletion mode is coupled between the first and second conductors to provide decoupling capacitance between the first and second conductors, the semiconductor capacitor having a gate voltage. Various configurations may be used including: n+ gate poly and n+ source/drain regions in an n-body; p+ gate poly and n+ source/drain regions in an n-body; p+ gate poly and p+ source/drain regions in an n-body; p+ gate poly and p+ source/drain regions in a p-body; n+ gate poly and p+ source/drain regions in a p-body; n+ gate poly and n+ source/drain regions in a p-body. The power supply voltage may have a larger absolute value than does a flatband voltage.
Abstract:
A method of programming a memory array is provided, including accessing a plurality of word lines of the memory array by providing a plurality of voltage steps sequentially after one another to the respective word lines, and accessing a plurality of bit lines of the memory array each time that a respective word line is accessed, to program a plurality of devices corresponding to individual word and bit lines that are simultaneously accessed, each device being programmed by breaking a dielectric layer of the device, accessing of the bit lines being sequenced such that only a single one of the devices is programmed at a time.
Abstract:
A voltage dependent capacitor to provide soft error rate tolerance in an integrated circuit is disclosed. In one embodiment, a parallel n-p voltage dependent capacitor is used to protect a node from noise. In another embodiment, an nFET-in-nWell voltage dependent capacitor is used to provide a soft error rate tolerant capacitor with reduced area.
Abstract:
A system includes a pull-up circuit to program a memory cell. The pull-up circuit may include a level shifter to receive a control signal, a supply voltage, and one or more of a plurality of rail voltages, each of the plurality of rail voltages substantially equal to a respective integer multiple of the supply voltage, and to generate a second control signal, and a cascode stage. The cascode stage may include a plurality of transistors, a gate voltage of each of the plurality of transistors to be controlled at least in part by a respective one of the second control signal, the supply voltage, and at least one of the plurality of rail voltages, and an output node to provide a cell programming signal.
Abstract:
A method and apparatus for providing a weak inversion mode metal-oxide-semiconductor (MOS) decoupling capacitor is described. In one embodiment, an enhancement-mode p-channel MOS (PMOS) transistor is constructed with a gate material whose work function differs from that commonly used. In one exemplary embodiment, platinum silicate (PtSi) is used. In alternate embodiments, the threshold voltage of the PMOS transistor may be changed by modifying the dopant levels of the substrate. In either embodiment the flat band magnitude of the transistor is shifted by the change in materials used to construct the transistor. When such a transistor is connected with the gate lead connected to the positive supply voltage and the other leads connected to the negative (ground) supply voltage, an improved decoupling capacitor results.
Abstract:
A method of programming a memory array is provided, including accessing a plurality of word lines of the memory array by providing a plurality of voltage steps sequentially after one another to the respective word lines, and accessing a plurality of bit lines of the memory array each time that a respective word line is accessed, to program a plurality of devices corresponding to individual word and bit lines that are simultaneously accessed, each device being programmed by breaking a dielectric layer of the device, accessing of the bit lines being sequenced such that only a single one of the devices is programmed at a time.
Abstract:
In one embodiment of the invention, a fuse element for a one time programmable memory may include carbon nanotubes coupled to a first transistor node and to a second transistor node. The carbon nanotubes may have a first resistance which may be changed upon programming the memory cell with low current levels.
Abstract:
A system includes a pull-up circuit to program a memory cell. The pull-up circuit may include a level shifter to receive a control signal, a supply voltage, and one or more of a plurality of rail voltages, each of the plurality of rail voltages substantially equal to a respective integer multiple of the supply voltage, and to generate a second control signal, and a cascode stage. The cascode stage may include a plurality of transistors, a gate voltage of each of the plurality of transistors to be controlled at least in part by a respective one of the second control signal, the supply voltage, and at least one of the plurality of rail voltages, and an output node to provide a cell programming signal.
Abstract:
Sequential circuits with error-detection are provided. They may, for example, be used to replace traditional master-slave flip-flops, e.g., in critical path circuits to detect and initiate correction of late transitions at the input of the sequential. In some embodiments, such sequentials may comprise a transition detector with a time borrowing latch.