摘要:
According to one exemplary embodiment, a structure comprises a substrate. The structure further comprises at least one memory cell situated on the substrate. The at least one memory cell may be, for example, a flash memory cell, such as a SONOS flash memory cell. The structure further comprises an interlayer dielectric layer situated over the at least one memory cell and over the substrate. According to this exemplary embodiment, the structure further comprises a UV radiation blocking layer which comprises silicon-rich TCS nitride. Further, an oxide cap layer is situated over the UV radiation blocking layer. The structure might further comprise an antireflective coating layer over the oxide cap layer. The interlayer dielectric may comprise BPSG and the oxide cap layer may comprise TEOS oxide.
摘要:
According to one exemplary embodiment, a structure comprises a substrate. The structure further comprises at least one memory cell situated on the substrate. The at least one memory cell may be, for example, a SONOS flash memory cell. The structure further comprises an interlayer dielectric layer situated over at least one memory cell and over the substrate. The structure further comprises a first antireflective coating layer situated over the interlayer dielectric layer. According to this exemplary embodiment, the structure further comprises a second antireflective coating layer situated directly over the first anti reflective coating layer. Either the first antireflective coating layer or second antireflective coating layer must be a silicon-rich layer. The first antireflective coating layer and the second antireflective coating may form a UV radiation blocking layer having a UV transparency less than approximately 1.0 percent, for example.
摘要:
Process for reducing charge leakage in a SONOS flash memory device, including in one embodiment, forming a bottom oxide layer of an ONO structure on the semiconductor substrate to form an oxide/silicon interface having a first oxygen content adjacent the oxide/silicon interface; treating the bottom oxide layer to increase the first oxygen content to a second oxygen content adjacent the oxide/silicon interface; and depositing a nitride charge-storage layer on the bottom oxide layer. In another embodiment, process for reducing charge leakage in a SONOS flash memory device, including forming a bottom oxide layer of an ONO structure on a surface of the semiconductor substrate having an oxide/silicon interface with a super-stoichiometric oxygen content adjacent the oxide/silicon interface; and depositing a nitride charge-storage layer on the bottom oxide layer.
摘要:
According to one exemplary embodiment, a structure comprises a substrate. The structure further comprises at least one memory cell situated on the substrate. The at least one memory cell may be, for example, a flash memory cell, such as a SONOS flash memory cell and may include a gate situated over an ONO stack. The structure further comprises an interlayer dielectric layer situated over the at least one memory cell and over the substrate. According to this exemplary embodiment, the structure further comprises a UV radiation blocking layer situated directly over the interlayer dielectric layer, where the UV radiation blocking layer is selected from the group consisting of silicon-rich oxide and silicon-rich nitride. The UV radiation blocking layer may have a thickness of between approximately 1500.0 Angstroms and approximately 2000.0 Angstroms, for example.
摘要:
A method of protecting a SONOS flash memory cell from UV-induced charging, including fabricating a SONOS flash memory cell in a semiconductor device; and depositing over the SONOS flash memory cell at least one UV-protective layer, the UV-protective layer including a substantially UV-opaque material. In one embodiment, the device includes a substantially UV-opaque sub-layer of a contact cap layer or a substantially UV-opaque contact cap layer.
摘要:
Process for fabricating a SONOS flash memory device, including in one embodiment, forming a bottom oxide layer of an ONO structure on a semiconductor substrate, wherein the bottom oxide layer has a first oxygen vacancy content; treating the bottom oxide layer to decrease the first oxygen vacancy content to a second oxygen vacancy content; and depositing a dielectric charge-storage layer on the bottom oxide layer. In another embodiment, a process for fabricating a SONOS flash memory device includes forming a bottom oxide layer of an ONO structure on the semiconductor substrate under strongly oxidizing conditions, wherein the bottom oxide layer has a super-stoichiometric oxygen content and an oxygen vacancy content reduced relative to a bottom oxide layer formed by a conventional process; and depositing a dielectric charge-storage layer on the bottom oxide layer.
摘要:
A method of protecting a SONOS flash memory cell from UV-induced charging, including fabricating a SONOS flash memory cell in a semiconductor device; and depositing over the SONOS flash memory cell at least one UV-protective layer, the UV-protective layer including a substantially UV-opaque material. A SONOS flash memory device, including a SONOS flash memory cell; and at least one UV-protective layer, in which the UV-protective layer comprises a substantially UV-opaque material, is provided. In one embodiment, the device includes a substantially UV-opaque contact cap layer.
摘要:
A SONOS flash memory device, including a semiconductor substrate; an ONO structure formed on the semiconductor substrate, the ONO structure including a bottom oxide layer, a dielectric charge storage layer and a top oxide layer, the bottom oxide layer having a super-stoichiometric oxygen content and an oxygen vacancy content of about 1010/cm2 or less, wherein the bottom oxide layer exhibits a reduced charge leakage relative to a bottom oxide layer having a stoichiometric or sub-stoichiometric oxygen content and a greater number of oxygen vacancies. In one embodiment, the bottom oxide layer has an oxygen vacancy content of substantially zero.
摘要翻译:一种SONOS闪速存储器件,包括半导体衬底; 形成在半导体衬底上的ONO结构,所述ONO结构包括底部氧化物层,介电电荷存储层和顶部氧化物层,所述底部氧化物层的超化学计量氧含量和氧空位含量为约10 10 / cm 2以下,其中底部氧化物层相对于具有化学计量或亚化学计量的氧含量和更大数量的氧的底部氧化物层显示出减小的电荷泄漏 空缺。 在一个实施方案中,底部氧化物层的氧空位含量基本为零。
摘要:
Process of fabricating multi-bit charge trapping dielectric flash memory device, including forming on a semiconductor substrate a bottom oxide layer to define a substrate/oxide interface, in which the bottom oxide layer includes a first oxygen concentration and a first nitrogen concentration; and adding a quantity of nitrogen to the bottom oxide layer, whereby the bottom oxide layer includes a first region adjacent the charge storage layer and a second region adjacent the substrate/oxide interface, the second region having a second oxygen concentration and a second nitrogen concentration, in which the second nitrogen concentration exceeds the first nitrogen concentration, provided that the second nitrogen concentration does not exceed the second oxygen concentration. In one embodiment, the first nitrogen concentration is substantially zero.
摘要:
The invention is a semiconductor device and a method of forming the semiconductor device. The semiconductor device comprises a substrate; buried bitlines formed in the substrate narrower than achievable at a resolution limit of lithography; a doped region formed adjacent at least one of the buried bitlines; a charge trapping layer disposed over the substrate; and a conductive layer disposed over the charge trapping layer, wherein the doped region adjacent the least one of the buried bitlines inhibits a leakage current between the buried bitlines.