摘要:
A method of making a semiconductor structure includes etching an anti-reflective coating layer at a pressure of 10 millitorr or less; etching a nitride layer with a first nitride etch plasma having a first F:C ratio; and etching the nitride layer with a second nitride etch plasma having a second F:C ratio. The first F:C ratio is greater than the second F:C ratio.
摘要:
A method of making a semiconductor structure includes etching an anti-reflective coating layer at a pressure of 10 millitorr or less; etching a nitride layer with a first nitride etch plasma having a first F:C ratio; and etching the nitride layer with a second nitride etch plasma having a second F:C ratio. The first F:C ratio is greater than the second F:C ratio.
摘要:
A general method of the invention is to provide a polymer-hardening precursor piece (such as silicon, carbon, silicon carbide or silicon nitride, but preferably silicon) within the reactor chamber during an etch process with a fluoro-carbon or fluoro-hydrocarbon gas, and to heat the polymer-hardening precursor piece above the polymerization temperature sufficiently to achieve a desired increase in oxide-to-silicon etch selectivity. Generally, this polymer-hardening precursor or silicon piece may be an integral part of the reactor chamber walls and/or ceiling or a separate, expendable and quickly removable piece, and the heating/cooling apparatus may be of any suitable type including apparatus which conductively or remotely heats the silicon piece.
摘要:
A general method of the invention is to provide a polymer-hardening precursor piece (such as silicon, carbon, silicon carbide or silicon nitride, but preferably silicon) within the reactor chamber during an etch process with a fluoro-carbon or fluoro-hydrocarbon gas, and to heat the polymer-hardening precursor piece above the polymerization temperature sufficiently to achieve a desired increase in oxide-to-silicon etch selectivity. Generally, this polymer-hardening precursor or silicon piece may be an integral part of the reactor chamber walls and/or ceiling or a separate, expendable and quickly removable piece, and the heating/cooling apparatus may be of any suitable type including apparatus which conductively or remotely heats the silicon piece.
摘要:
A general method of the invention is to provide a polymer-hardening precursor piece (such as silicon, carbon, silicon carbide or silicon nitride, but preferably silicon) within the reactor chamber during an etch process with a fluoro-carbon or fluoro-hydrocarbon gas, and to heat the polymer-hardening precursor piece above the polymerization temperature sufficiently to achieve a desired increase in oxide-to-silicon etch selectivity. Generally, this polymer-hardening precursor or silicon piece may be an integral part of the reactor chamber walls and/or ceiling or a separate, expendable and quickly removable piece, and the heating/cooling apparatus may be of any suitable type including apparatus which conductively or remotely heats the silicon piece.
摘要:
A general method of the invention is to provide a polymer-hardening precursor piece (such as silicon, carbon, silicon carbide or silicon nitride, but preferably silicon) within the reactor chamber during an etch process with a fluoro-carbon or fluoro-hydrocarbon gas, and to heat the polymer-hardening precursor piece above the polymerization temperature sufficiently to achieve a desired increase in oxide-to-silicon etch selectivity. Generally, this polymer-hardening precursor or silicon piece may be an integral part of the reactor chamber walls and/or ceiling or a separate, expendable and quickly removable piece, and the heating/cooling apparatus may be of any suitable type including apparatus which conductively or remotely heats the silicon piece.
摘要:
A general method of the invention is to provide a polymer-hardening precursor piece (such as silicon, carbon, silicon carbide or silicon nitride, but preferably silicon) within the reactor chamber during an etch process with a fluoro-carbon or fluoro-hydrocarbon gas, and to heat the polymer-hardening precursor piece above the polymerization temperature sufficiently to achieve a desired increase in oxide-to-silicon etch selectivity. Generally, this polymer-hardening precursor or silicon piece may be an integral part of the reactor chamber walls and/or ceiling or a separate, expendable and quickly removable piece, and the heating/cooling apparatus may be of any suitable type including apparatus which conductively or remotely heats the silicon piece.
摘要:
The method of forming a polysilicon layer is provided. A first polysilicon layer with a first grain size is formed on a substrate. A second polysilicon layer with a second grain size is formed on the first polysilicon layer. The first grain size is smaller than the second grain size. The first polysilicon layer with a smaller grain size can serve as a base for the following deposition, so that the second polysilicon layer formed thereon has a flatter topography, and thus, the surface roughness is reduced and the Rs uniformity within a wafer is improved.
摘要:
A method for fabricating a strained channel semiconductor structure includes providing a substrate, forming at least one gate structure on said substrate, performing an etching process to form two recesses in said substrate at opposites sides of said gate structure, the sidewall of said recess being concaved in the direction to said gate structure and forming an included angle with respect to horizontal plane, and performing a pre-bake process to modify the recess such that said included angle between the sidewall of said recess and the horizontal plane is increased.
摘要:
First, a substrate with a recess is provided in a semiconductor process. Second, an embedded SiGe layer is formed in the substrate. The embedded SiGe layer includes an epitaxial SiGe material which fills up the recess. Then, a pre-amorphization implant (PAI) procedure is carried out on the embedded SiGe layer to form an amorphous region. Next, a source/drain implanting procedure is carried out on the embedded SiGe layer to form a source doping region and a drain doping region. Later, a source/drain annealing procedure is carried out to form a source and a drain in the substrate. At least one of the pre-amorphization implant procedure and the source/drain implanting procedure is carried out in a cryogenic procedure below −30° C.