摘要:
A component useful for a plasma reaction chamber includes a heat sink such as a temperature-controlled support member and a heated member such as an electrically powered showerhead electrode. The showerhead electrode is peripherally secured to the support member to enclose a gas distribution chamber between a top surface of the electrode and a bottom surface of the support member. A heat transfer member extends between the electrode and the support member and transfers heat from an area of temperature buildup on the top surface of the showerhead electrode to the bottom surface of the support member in order to control the temperature distribution across the showerhead electrode.
摘要:
A gas distribution system for uniformly or non-uniformly distributing gas across the surface of a semiconductor substrate. The gas distribution system includes a support plate and a showerhead which are secured together to define a gas distribution chamber therebetween. A baffle assembly including one or more baffle plates is located within the gas distribution chamber. The baffle arrangement includes a first gas supply supplying process gas to a central portion of the baffle chamber and a second gas supply supplying a second process gas to a peripheral region of the baffle chamber. Because the pressure of the gas is greater at locations closer to the outlets of the first and second gas supplies, the gas pressure at the backside of the showerhead can be made more uniform than in the case with a single gas supply. In one arrangement, the first and second gas supplies open into a plenum between a top baffle plate and a temperature controlled support member wherein the plenum is divided into the central and peripheral regions by an O-ring. In a second arrangement, the first gas supply opens into the central region above an upper baffle plate and the second gas supply opens into the periphery of a plenum between the upper baffle plate and a lower baffle plate.
摘要:
A gas distribution system for semiconductor processing includes a contoured surface to achieve a desired gas distribution on the backside of a showerhead. The system can include one or more gas supplies opening into a plenum between a baffle plate and a temperature-controlled support member. The baffle plate can have a nonuniform thickness and geometry-controlled openings to achieve a desired gas distribution. In one arrangement the baffle plate is conical in shape with uniform diameter holes extending different distances through the baffle plate to achieve a uniform pressure of gas through outlets in a planar bottom surface of the baffle plate. In another arrangement, the holes have progressively larger diameters in a direction away from the location of the centrally located gas supply outlet. The shape of the baffle plate and/or configuration of the holes can be designed to achieve a desired gas pressure distribution.
摘要:
A gas distribution system for uniformly or non-uniformly distributing gas across the surface of a semiconductor substrate. The gas distribution system includes a support plate and a showerhead which are secured together to define a gas distribution chamber therebetween. A baffle assembly including one or more baffle plates is located within the gas distribution chamber. The baffle arrangement includes a first gas supply supplying process gas to a central portion of the baffle chamber and a second gas supply supplying a second process gas to a peripheral region of the baffle chamber. Because the pressure of the gas is greater at locations closer to the outlets of the first and second gas supplies, the gas pressure at the backside of the showerhead can be made more uniform than in the case with a single gas supply. In one arrangement, the first and second gas supplies open into a plenum between a top baffle plate and a temperature controlled support member wherein the plenum is divided into the central and peripheral regions by an O-ring. In a second arrangement, the first gas supply opens into the central region above an upper baffle plate and the second gas supply opens into the periphery of a plenum between the upper baffle plate and a lower baffle plate.
摘要:
A method for configuring a plasma processing chamber for preventing a plasma un-confinement event during processing of a substrate from occurring outside of a confined plasma sustaining region is provided. The confined plasma sustaining region is defined by a set of confinement rings surrounding a bottom portion of an electrode is provided. The method includes determining a worst-case Debye length for a plasma generated in the plasma processing chamber during the processing. The method also includes performing at least one of adjusting gaps between any pair of adjacent confinement rings and adding at least one additional confinement ring to ensure that a gap between the any pair of adjacent confinement rings is less than the worst-case Debye length.
摘要:
A plasma processing system having a plasma processing chamber comprising at least one of a chamber wall and a chamber liner is disclosed. The plasma processing system includes a plurality of ground straps disposed around a circumference of a chamber surface, the chamber surface being one of the chamber walls and the chamber liner of the plasma processing chamber. The plasma processing system further includes at least a first impedance device coupled to at least a first ground strap of the plurality of ground straps, wherein a second ground strap of the plurality of ground straps is not provided with a second impedance device having the same impedance value as the first impedance device.
摘要:
A semiconductor wafer processing apparatus includes a first electrode exposed to a first plasma generation volume, a second electrode exposed to a second plasma generation volume, and a gas distribution unit disposed between the first and second plasma generation volumes. The first electrode is defined to transmit radiofrequency (RF) power to the first plasma generation volume, and distribute a first plasma process gas to the first plasma generation volume. The second electrode is defined to transmit RF power to the second plasma generation volume, and hold a substrate in exposure to the second plasma generation volume. The gas distribution unit includes an arrangement of through-holes defined to fluidly connect the first plasma generation volume to the second plasma generation volume. The gas distribution unit also includes an arrangement of gas supply ports defined to distribute a second plasma process gas to the second plasma generation volume.
摘要:
Broadly speaking, the embodiments of the present invention provide an improved chamber cleaning mechanism. The present invention can also be used to provide additional knobs to tune the etch processes. In one embodiment, a plasma processing chamber configured to generate a plasma includes a bottom electrode assembly with an bottom electrode, wherein the bottom electrode is configured to receive a substrate. The plasma processing chamber includes a top electrode assembly with a top electrode and an inductive coil surrounding the top electrode. The inductive coil is configured to convert a gas into a plasma within a region defined within the chamber, wherein the region is outside an area defined above a top surface of the bottom electrode.
摘要:
Systems and methods are presented for a peripheral RF feed and symmetric RF return for symmetric RF delivery. According to one embodiment, a chuck assembly for plasma processing is provided. The chuck assembly includes an electrostatic chuck having a substrate support surface on a first side, a facility plate coupled to the electrostatic chuck on a second side that is opposite the substrate support surface, a peripheral RF feed configured to deliver RF power, the peripheral RF feed having a first portion contacting a periphery of the facility plate and an RF strap coupling the peripheral RF feed to an RF source.
摘要:
Components of a plasma processing apparatus includes a backing member with gas passages attached to an upper electrode with gas passages. To compensate for the differences in coefficient of thermal expansion between the metallic backing member and upper electrode, the gas passages are positioned and sized such that they are misaligned at ambient temperature and substantially concentric at an elevated processing temperature. Non-uniform shear stresses can be generated in the elastomeric bonding material, due to the thermal expansion. Shear stresses can either be accommodated by applying an elastomeric bonding material of varying thickness or using a backing member comprising of multiple pieces.