Abstract:
Embodiments of a silicon carbide (SiC) device are provided herein. In some embodiments, a silicon carbide (SiC) device may include a gate electrode disposed above a SiC semiconductor layer, wherein the SiC semiconductor layer comprises: a drift region having a first conductivity type; a well region disposed adjacent to the drift region, wherein the well region has a second conductivity type; and a source region having the first conductivity type disposed adjacent to the well region, wherein the source region comprises a source contact region and a pinch region, wherein the pinch region is disposed only partially below the gate electrode, wherein a sheet doping density in the pinch region is less than 2.5×1014 cm−2, and wherein the pinch region is configured to deplete at a current density greater than a nominal current density of the SiC device to increase the resistance of the source region.
Abstract:
A semiconductor device is presented. The device includes a semiconductor layer including silicon carbide, and having a first surface and a second surface. A gate insulating layer is disposed on a portion of the first surface of the semiconductor layer, and a gate electrode is disposed on the gate insulating layer. The device further includes an oxide disposed between the gate insulating layer and the gate electrode at a corner adjacent an edge of the gate electrode so as the gate insulating layer has a greater thickness at the corner than a thickness at a center of the layer. A method for fabricating the device is also provided.
Abstract:
A semiconductor device includes a substrate including silicon carbide; a drift layer disposed over the substrate including a drift region doped with a first dopant and conductivity type; and a second region, doped with a second dopant and conductivity type, adjacent to the drift region and proximal to a surface of the drift layer. The semiconductor device further includes a junction termination extension adjacent to the second region with a width and discrete regions separated in a first and second direction doped with varying concentrations of the second dopant type, and an effective doping profile of the second conductivity type of functional form that generally decreases away from the edge of the primary blocking junction. The width is less than or equal to a multiple of five times the width of the one-dimensional depletion width, and the charge tolerance of the semiconductor device is greater than 1.0×1013 per cm2.
Abstract:
A power module includes a first bus bar having a first plurality of tabs, wherein each of the first plurality of tabs is electrically coupled to a respective conductive trace of a plurality of conductive traces disposed on a first side; a second bus bar having a second plurality of tabs, wherein each of the second plurality of tabs is electrically coupled to a respective conductive trace of a plurality of conductive traces disposed on a second side; and a third bus bar having a third plurality of tabs, wherein at least one tab of the third plurality of tabs is electrically coupled to a respective conductive trace of the plurality of conductive traces disposed on the first side and at least one tab of the third plurality of tabs is electrically coupled to a respective conductive trace of the plurality of conductive traces disposed on the second side.
Abstract:
A power module includes an input bus, a switching device, and an output bus. The input bus includes a first coating of a high permeability magnetic conductive material and is configured to receive input direct current (DC) electrical power from an electrical power source. The switching device is electrically coupled to the first input bus, and is configured to selectively connect and disconnect to facilitate converting the input DC electrical power into output alternating current (AC) electrical power. The output bus includes a second coating of the high permeability magnetic conductive material, and is electrically coupled to the first switching device. The output bus is configured to supply the output AC electrical power to an electrical load.
Abstract:
A power module may include a first bus bar having a first plurality of tabs, wherein each of the first plurality of tabs is electrically coupled to a respective conductive trace of a plurality of conductive traces disposed on a first side; a second bus bar having a second plurality of tabs, wherein each of the second plurality of tabs is electrically coupled to a respective conductive trace of a plurality of conductive traces disposed on a second side; and a third bus bar having a third plurality of tabs, wherein at least one tab of the third plurality of tabs is electrically coupled to a respective conductive trace of the plurality of conductive traces disposed on the first side and at least one tab of the third plurality of tabs is electrically coupled to a respective conductive trace of the plurality of conductive traces disposed on the second side.
Abstract:
Systems and methods for providing automatic short circuit protection in an electrical system via a switching device. In some embodiments, the switching device includes a switching transistor that selectively switches between an open position and a closed position based at least in part on a switching control signal, for example, to facilitate converting electrical power with first electrical characteristics output into electrical power with the second electrical characteristics. Additionally, the switching device includes a protection transistor electrically coupled in series with the switching transistor, in which a constant gate voltage is supplied to the protection transistor to maintain the first protection transistor in the closed position during operation of the power converter; and the protection transistor automatically limits current flow through the first switching device by reducing a gate voltage applied to the switching transistor when a short circuit is expected to be present in the electrical system.
Abstract:
A method and system for a power module device is provided. The device includes a base, a circuit board including a plurality of gated switches formed of a semiconductor material, and an electrical bus member configured to connect to a voltage source having a first polarity. The bus member includes a length that is substantially greater than a width of the bus member and the width is substantially greater than a thickness of the bus member. The power module device also includes a second bus member configured to connect to a voltage source having a second polarity. The second bus member is positioned in a nested face-to-face configuration with respect to the first bus member. The power module device further includes a layer of electrical insulation positioned between the first bus member and the second bus member.
Abstract:
A method and system for a power module is provided. The power module includes a first substrate including a first conductive substrate having a first plurality of power semiconductor switches arranged thereon, and at least one second conductive substrate electrically coupled to the first conductive substrate. A first terminal is electrically coupled to the first conductive substrate. The power module also includes a second substrate including a third conductive substrate having a second plurality of power semiconductor switches arranged thereon, and at least one fourth conductive substrate electrically coupled to the third conductive substrate. The third conductive substrate is electrically coupled to the second conductive substrate. A second terminal is electrically coupled to the fourth conductive substrate.
Abstract:
A method and system for a power module device is provided. The device includes a base, a circuit board including a plurality of gated switches formed of a semiconductor material, and an electrical bus member configured to connect to a voltage source having a first polarity. The bus member includes a length that is substantially greater than a width of the bus member and the width is substantially greater than a thickness of the bus member. The power module device also includes a second bus member configured to connect to a voltage source having a second polarity. The second bus member is positioned in a nested face-to-face configuration with respect to the first bus member. The power module device further includes a layer of electrical insulation positioned between the first bus member and the second bus member.