Abstract:
An SOI semiconductor device includes a first wafer having an active semiconductor layer and a first oxide layer and a second wafer having a semiconductor substrate and a second oxide layer, the first oxide layer being bonded to the second oxide layer, and one of the first wafer and the second wafer includes a nitride layer. The nitride layer can be formed between the semiconductor substrate and the second oxide layer. A third oxide layer can be formed on the semiconductor substrate and the nitride layer is formed between the second oxide layer and the third oxide layer. The nitride layer can be formed between the active semiconductor layer and the first oxide layer. The first wafer can include a third oxide layer formed on the active semiconductor layer and the nitride layer is formed between the third oxide layer and the first oxide layer.
Abstract:
An SOI semiconductor device includes a first wafer having an active semiconductor layer and a first oxide layer and a second wafer having a semiconductor substrate and a second oxide layer, the first oxide layer being bonded to the second oxide layer, and one of the first wafer and the second wafer includes a nitride layer. The nitride layer can be formed between the semiconductor substrate and the second oxide layer. A third oxide layer can be formed on the semiconductor substrate and the nitride layer is formed between the second oxide layer and the third oxide layer. The nitride layer can be formed between the active semiconductor layer and the first oxide layer. The first wafer can include a third oxide layer formed on the active semiconductor layer and the nitride layer is formed between the third oxide layer and the first oxide layer.
Abstract:
One aspect of the disclosure relates to a method of forming an integrated circuit structure. The method may include providing a substrate having a front side and a back side, the substrate including a deep trench (DT) capacitor within the substrate extending toward the back side of the substrate; etching the substrate on the back side of the substrate to remove at least a portion of the substrate on the back side; forming a first dielectric layer covering the back side of the substrate and extending away from the front side of the substrate; and forming a through silicon via (TSV) adjacent to the DT capacitor, the TSV extending through the first dielectric layer toward the front side of the substrate.
Abstract:
Assemblies including a device layer of a silicon-on-insulator (SOI) substrate and a replacement substrate replacing a handle wafer of the SOI substrate, and methods for transferring the device layer of the SOI substrate from the handle wafer to the replacement substrate. A device structure is formed in a first section of the handle wafer, and a second section of the handle wafer adjoining the first section of the handle wafer is removed to expose a surface of the buried dielectric layer of the silicon-on-insulator substrate. A permanent substrate is attached to the surface of the buried dielectric layer. When the permanent substrate is attached to the surface of the buried dielectric layer, the section of the handle wafer is received inside a cavity defined in the permanent substrate.
Abstract:
The disclosure generally relates to semiconductor structures and, more particularly, to electrical connections used with crackstop structures and methods of manufacture. The structure includes: a conductive material; a dielectric material formed over the conductive material; a non-corrosive conductive material in at least one opening of the dielectric material and in direct contact with the conductive material; a crackstop structure formed over the dielectric material; and at least one of wiring layer in contact with the non-corrosive conductive material.
Abstract:
An IC structure including: a first replacement gate stack for the pFET, the first replacement gate stack including: an interfacial layer in a first opening in the dielectric layer; a high-k layer over the interfacial layer in the first opening; a pFET work function metal layer over the high-k layer in the first opening; and a first gate electrode layer over the pFET work function metal layer and substantially filling the first opening; and a second replacement gate stack for the nFET, the second gate stack laterally adjacent to the first gate stack and including: the interfacial layer in a second opening in the dielectric layer; the high-k layer over the interfacial layer in the second opening; a nFET work function metal layer over the high-k layer in the second opening; and a second gate electrode layer over the nFET work function metal layer and substantially filling the second opening.
Abstract:
An electronic package comprising a plurality of vertically stacked integrated circuit (IC) devices including a first IC device and a second IC device is provided. The electronic package also includes a first bonding layer coupling one side of the first IC device entirely to a portion of a side of the second IC device. The remaining portion of the side of the second IC device that is not coupled to the one side of the first IC device, includes an antenna.
Abstract:
One aspect of the disclosure relates to a method of forming an integrated circuit structure. The method may include providing a substrate having a front side and a back side, the substrate including a deep trench (DT) capacitor within the substrate extending toward the back side of the substrate; etching the substrate on the back side of the substrate to remove at least a portion of the substrate on the back side; forming a first dielectric layer covering the back side of the substrate and extending away from the front side of the substrate; and forming a through silicon via (TSV) adjacent to the DT capacitor, the TSV extending through the first dielectric layer toward the front side of the substrate.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to corrosion resistant chip sidewall connections with crackstop structures with a hermetic seal, and methods of manufacture. The structure includes: a guard ring structure surrounding an active region of an integrated circuit chip; an opening formed in the guard ring structure; and a hermetic seal encapsulating the opening and a portion of the guard ring structure, the hermetic seal being structured to prevent moisture ingress to the active region of the integrated circuit chip through the opening.
Abstract:
An SOI semiconductor device includes a first wafer having an active semiconductor layer and a first oxide layer and a second wafer having a semiconductor substrate and a second oxide layer, the first oxide layer being bonded to the second oxide layer, and one of the first wafer and the second wafer includes a nitride layer. The nitride layer can be formed between the semiconductor substrate and the second oxide layer. A third oxide layer can be formed on the semiconductor substrate and the nitride layer is formed between the second oxide layer and the third oxide layer. The nitride layer can be formed between the active semiconductor layer and the first oxide layer. The first wafer can include a third oxide layer formed on the active semiconductor layer and the nitride layer is formed between the third oxide layer and the first oxide layer.