摘要:
A textured dielectric patch antenna is fabricated by applying a first mask pattern (310, 510, 610, 710, 915, 1015, 1210) to a first side of a solid panel made of a first material that is a ceramic dielectric and then sandblasting the solid panel through the first mask pattern from the first side to at least partially generate a shaped cavity (315, 920, 1040). The shaped cavity of the solid panel may be filled with a second material (330, 740). The first and second materials have substantially differing dielectric constants. The first side and second side of the solid panel are metallized (325), forming a patch antenna. The shaped cavities can be made more complex by using additional masking and/or sandblasting steps.
摘要:
A tunable high impedance surface device (100) includes a conductive ground plane (105) and a plurality of conductive elements (110-114) electrically connected to the conductive ground plane (105). The device (100) also includes a plurality of capacitive elements (120-124) operable to vary a predetermined electromagnetic characteristic of the apparatus and standoffs (130, 132) between the plurality of capacitive elements (120-124) and the plurality of conductive elements (110-114). In one form, laser-drilled and electrically conductive micro-vias (136, 138) extend through the standoffs (130, 132) thereby electrically connecting the plurality of capacitive elements (120-124) to a data bus (140). The capacitive elements (120-124) may be integral with a circuit board (144) that supports the plurality conductive elements (110-114). Either the capacitive elements (120-124) or the conductive elements (110-114) are mechanically flexible and selectively movable to controllably adjust the distance (142) between the capacitive and conductive elements.
摘要:
A tunable high impedance surface device (100) includes a conductive ground plane (105) and a plurality of conductive elements (110-114) electrically connected to the conductive ground plane (105). The device (100) also includes a plurality of capacitive elements (120-124) operable to vary a predetermined electromagnetic characteristic of the apparatus and standoffs (130, 132) between the plurality of capacitive elements (120-124) and the plurality of conductive elements (110-114). In one form, laser-drilled and electrically conductive micro-vias (136, 138) extend through the standoffs (130, 132) thereby electrically connecting the plurality of capacitive elements (120-124) to a data bus (140). The capacitive elements (120-124) may be integral with a circuit board (144) that supports the plurality conductive elements (110-114). Either the capacitive elements (120-124) or the conductive elements (110-114) are mechanically flexible and selectively movable to controllably adjust the distance (142) between the capacitive and conductive elements.
摘要:
A textured dielectric panel (305, 520, 625, 745, 925, 1035, 1205) is fabricated by applying a first mask pattern (310, 510, 610, 710, 915, 1015, 1210) to a first side of a solid panel made of a first material that is a ceramic dielectric and then sandblasting the solid panel through the first mask pattern from the first side to at least partially generate a shaped cavity (315, 920, 1040). The shaped cavity of the solid panel may be filled with a-second material (330, 740). The first and second materials have substantially differing dielectric constants. The first side and second side of the solid panel may be metallized (325), forming a patch antenna. The shaped cavities can be made more complex by using additional masking and/or sandblasting steps.
摘要:
A method for forming embedded capacitors on a printed circuit board is disclosed. The capacitor is formed on the printed circuit board by a depositing a first dielectric layer over one or more electrodes situated on the PCB. Another electrode is formed on top of the first dielectric layer and a second dielectric layer is deposited on top of that electrode. A third electrode is formed on top of the second dielectric layer. The two dielectric layers are abrasively delineated in a single step by a method such as sand blasting to define portions of the first and second dielectric layers to create a multilayer capacitive structure.
摘要:
A dielectric circuit board foil (400, 600) includes a conductive metal foil layer (210, 660), a crystallized dielectric oxide layer (405, 655) disposed adjacent a first surface of the conductive metal foil layer, a lanthanum nickelate layer (414, 664) disposed on the crystallized dielectric oxide layer, and an electrode layer (415, 665) that is substantially made of one or more base metals disposed on the lanthanum nickelate layer. The foil (400, 600) may be adhered to a printed circuit board sub-structure (700) and used to economically fabricate a plurality of embedded capacitors, including isolated capacitors of large capacitive density (>1000 pf/mm2).
摘要翻译:电介质电路板箔(400,600)包括导电金属箔层(210,660),邻近导电金属箔层的第一表面设置的结晶介电氧化物层(405,655),镍酸镧层(414) ,664)和基本上由设置在镍酸镧层上的一种或多种贱金属制成的电极层(415,665)。 箔(400,600)可以粘附到印刷电路板子结构(700)上,并用于经济地制造多个嵌入式电容器,包括具有大电容密度(> 1000pf / mm 2)的隔离电容器, / SUP>)。
摘要:
A method for manufacturing a microelectronic assembly to have a resistor, and particularly a metal resistive film, with desirable processing and dimensional characteristics. The method generally entails applying a photosensitive dielectric to a substrate to form a dielectric layer. The dielectric layer is photoimaged to polymerize a first portion of the dielectric layer on a first region of the substrate, leaving the remainder of the dielectric layer unpolymerized. An electrically resistive film is then applied to the dielectric layer, and the dielectric layer is developed to remove concurrently the unpolymerized portion thereof and the portion of the resistive film overlying the unpolymerized portion, so that a portion of the resistive film remains over the second portion to form the resistor. An alternative process order is to apply the resistive film prior to exposing the dielectric layer to radiation, and then exposing the dielectric layer through the resistive film. The resistive film is preferably a multilayer film that includes an electrically resistive layer, such as NiP, NiCr or another nickel-containing alloy, and a sacrificial backing such as a layer of copper.
摘要:
High capacitance value capacitors are formed using bimetal foils of an aluminum layer attached to a copper layer. The copper side of a bimetallic copper/aluminum foil or a monometallic aluminum foil is temporarily protected using aluminum or other materials, to form a sandwich. The exposed aluminum is treated to increase the surface area of the aluminum by at least one order of magnitude, while not attacking any portion of the protected metal. When the sandwich is separated, the treated bimetal foil is formed into a capacitor, where the copper layer is one electrode of the capacitor and the treated aluminum layer is in intimate contact with a dielectric layer of the capacitor.
摘要:
A method is for fabricating an embedded capacitance printed circuit board assembly (400, 1100). The embedded capacitance printed circuit board assembly includes two embedded capacitance structures (110). Each capacitance structure (110) includes a crystallized dielectric oxide layer (115) sandwiched between an outer electrode layer (120) and an inner electrode layer (125) in which the two inner electrode layers are electrically connected together. A rivet via (1315) and a stacked via (1110) formed from a button via (910) and a stacked blind via (1111) may be used to electrically connect the two inner electrode layers together. A spindle via (525) may be formed through the inner and outer layers. The multi-layer printed circuit board may be formed from a capacitive laminate (100) that includes two capacitance structures.
摘要:
A technique for fabricating a patterned resistor on a substrate produces a patterned resistor (101, 801, 1001, 1324, 1374) including two conductive end terminations (110, 810, 1010) on the substrate, a pattern of first resistive material (120, 815, 1015) having a first width (125) and a first sheet resistance, and a pattern of second resistive material (205, 820, 1020) having a second width (210) and a second sheet resistance that at least partially overlies the pattern of first resistive material. One of the first and second sheet resistances is a low sheet resistance and the other of the first and second resistances is a high sheet resistance. A ratio of the high sheet resistance to the low sheet resistance is at least ten to one. The pattern having the higher sheet resistance is substantially wider than the pattern having the low sheet resistance. The patterned resistor can be precision trimmed 1225.