Abstract:
Provided is a plasma etching method which enables etching with high accuracy while controlling and reducing surface roughness of a transition metal film. The etching is performed for the transition metal film, which is formed on a sample and contains a transition metal element, by a first step of isotropically generating a layer of transition metal oxide on a surface of the transition metal film while a temperature of the sample is maintained at 100° C. or lower, a second step of raising the temperature of the sample to a predetermined temperature of 150° C. or higher and 250° C. or lower while a complexation gas is supplied to the layer of transition metal oxide, a third step of subliming and removing a reactant generated by an reaction between the complexation gas and the transition metal oxide formed in the first step while the temperature of the sample is maintained at 150° C. or higher and 250° C. or lower, and a fourth step of cooling the sample.
Abstract:
An plasma etching method for etching a film layer includes a plurality of times repeating a step set including a first step of introducing a gas containing hydrogen fluoride into a processing chamber and supplying hydrogen fluoride molecules to the surface of an oxide film, a second step of exhausting the interior of the processing chamber in vacuum to remove the hydrogen fluoride, and a third step of introducing a gas containing hydrogen nitride into the processing chamber and supplying hydrogen nitride to the surface of the oxide film to form a compound layer containing nitrogen, hydrogen, and fluorine on the surface of the film layer, and removing the compound layer formed on the surface of the film layer. Foreign object contamination is prevented by inhibiting mixing of hydrogen fluoride gas and hydrogen nitride gas, and the etching amount is controlled by the number of times of repeating application thereof.
Abstract:
Provided is means which enables observation of the shape of a specimen as it is without deforming the specimen. Observation is made by allowing a specimen-holding member having an opening (for example, microgrid and mesh) to hold an ionic liquid and charging a specimen thereto, to allow the specimen to suspend in the ionic liquid. Furthermore, in the proximity of the specimen-holding member, a mechanism of injecting an ionic liquid (ionic liquid introduction mechanism) and/or an electrode are provided. When a voltage is applied to the electrode, the specimen moves or deforms in the ionic liquid. How the specimen moves or deforms can be observed. Furthermore, in the proximity of specimen-holding member, an evaporation apparatus is provided to enable charge of the specimen into the ionic liquid while evaporating. Furthermore, in the proximity of the specimen-holding member, a microcapillary is provided to charge a liquid-state specimen into the ionic liquid. Note that the specimen-holding member is designed to be rotatable.
Abstract:
A substrate processing method for reducing a surface roughness of a semiconductor wafer by processing a film structure having at least two types of films beforehand disposed on the substrate, including steps of repeating an adsorption step of supplying activated particles into the processing chamber and allowing the particles to be adsorbed to a surface of a desirable film to be etched in the at least two types of films to allow the particles to combine with a material of the desirable film to form a reaction layer, a removal step of using plasma generated by supplying oxygen into the processing chamber to remove a deposit containing particles adhering to a surface of an undesirable film to be etched in the films, and a desorption step of desorbing and removing the reaction layer on the desirable film to be etched by heating the sample.
Abstract:
A plasma processing apparatus includes a stage disposed in a processing chamber for mounting a wafer, a plasma generation chamber disposed above the processing chamber for plasma generation using process gas, a plate member having multiple introduction holes, made of a dielectric material, disposed above the stage and between the processing chamber and the plasma generation chamber, and a lamp disposed around the plate member for heating the wafer. The plasma processing apparatus further includes an external IR light source, an emission fiber arranged in the stage, that outputs IR light from the external IR light source toward a wafer bottom, and a light collection fiber for collecting IR light from the wafer. Data obtained using only IR light from the lamp is subtracted from data obtained also using IR light from the external IR light source during heating of the wafer. Thus, a wafer temperature is determined.
Abstract:
A plasma processing apparatus includes a processing chamber to be depressurized in a vacuum vessel with a sidewall made of a transparent or translucent dielectric material, a stage in the processing chamber to mount a wafer thereon, a coil disposed around an outer side of the sidewall and supplied with radio-frequency power for forming plasma above the stage in the processing chamber, a lamp disposed above the coil outside the vacuum vessel which radiates light onto the wafer, and a reflector disposed the coil and reflecting light to irradiate an inside of the processing chamber.
Abstract:
A sample observation method of the present invention comprises a step of defining, with respect to an electron microscope image, an outline of an observation object with respect to a sample (3), or a plurality of points located along the outline, and a step of arranging a plurality of fields of view for an electron microscope along the outline, wherein electron microscope images of the plurality of fields of view that have been defined and arranged along the shape of the observation object through each of the above-mentioned steps are acquired. It is thus made possible to provide a sample observation method that is capable of selectively acquiring, with respect to observation objects of various shapes, an electron microscope image based on a field of view definition that is in accordance with the shape of the observation object, as well as an electron microscope apparatus that realizes such a sample observation method.
Abstract:
The present invention provides a plasma processing method or a plasma processing method, which allows the evenness of etching amounts to increase and the yield of processing to improve. A method for etching a tungsten film includes: a first step of depositing a fluorocarbon layer and forming an intermediate layer that contains tungsten and fluorine and is self-limiting between the fluorocarbon layer and the tungsten film by supplying plasma of an organic gas containing fluorine to a base material having the tungsten film over at least a part of the surface; and a second step of removing the fluorocarbon layer and the intermediate layer by using plasma of an oxygen gas.
Abstract:
In a vacuum processing apparatus including: a vacuum container including a processing chamber therein; a plasma formation chamber; plate members being arranged between the processing chamber and the plasma formation chamber; and a lamp and a window member being arranged around the plate members, in order that a wafer and the plate members are heated by electromagnetic waves from the lamp, a bottom surface and a side surface of the window member is formed of a member transmitting the electromagnetic waves therethrough.
Abstract:
In an etching method of etching a tungsten film, the method is provided to execute a generating a surface reaction layer on a tungsten film that is formed on a surface of a base material by supplying a reactive species including fluorine which is generated in plasma onto the base material for a first predetermined time in a state where the base material of which the tungsten film is formed on at least a portion of the surface is cooled to a melting point temperature or lower of a tungsten fluoride, and a removing the surface reaction layer that is generated on the tungsten film by heating the base material of which the surface reaction layer is generated on the tungsten film to a boiling point temperature or higher of the tungsten fluoride for a second predetermined time.