摘要:
An optical processing apparatus for processing optically a workpiece (7) by using a light beam (B). The apparatus is capable of automatically adjusting a imaging magnification to a predetermined value and at the same time maintaining constant a imaging magnification regardless of exchange of masks (3; 100) and workpieces (7) and for ensuring an extended use life of a mask with satisfactory mask function. The apparatus includes a light source system (1) for generating a light beam (B) for illuminating a mask (3; 100) having a predetermined pattern, a imaging lens (5) for copying a pattern image of the mask (3; 100) onto a workpiece (7), a mask moving mechanism (4) for moving the mask in a direction perpendicular to an optical axis (L) of the imaging lens (5), a workpiece moving mechanism for moving the workpiece in a direction perpendicular to the optical axis (L) of the imaging lens (5), a imaging magnification changing mechanism for changing inter-mask/lens/workpiece distance between the mask, the imaging lens and the workpiece, and a central control unit (9) which is comprised of an actual imaging magnification arithmetic module (91) for determining an actual imaging magnification value (M') in terms of a ratio between the copied pattern image and a predetermined pattern, a magnification decision module (92) for making decision whether or not a difference between the actual imaging magnification value and a desired imaging magnification value is smaller than a permissible value, an optical-axis displacement control module (93) responsive to indication that the difference exceeds a permissible value (.delta.) to thereby arithmetically determine on the basis of the actual and desired imaging magnification values the inter-mask/lens/workpiece distance at which the actual imaging magnification value (M') becomes equal to the desired imaging magnification value (M) for controlling thereby the imaging magnification changing mechanism so that the inter-mask/lens/workpiece distance coincides with the arithmetically determined distance, and a displacement control module for controlling the mask moving mechanism and the workpiece moving mechanism.
摘要:
By dissipating a reverse voltage energy occurring on the pulse generation capacitor (4) of a pulse laser apparatus through the diode (11) connected in parallel with this pulse generation capacitor (4), arc or streamer becomes not occurring, and hence the lifetime of the main discharge electrodes become long and a high-repetition rate oscillation becomes possible.
摘要:
A wavelength monitor/stabilizer for narrowly controlling the bandwidth of laser; the monitor/stabilizer uses parameters Q, F or G derived by measuring diameters of interference fringes given by the beam of the wavelength-controlled narrow bandwidth laser e.g. excimer laser and those given by the reference light e.g. of a mercury lamp. The controlling is made by controlling the parameter to be in a predetermined range. An image sensing unit for detecting the interference fringes are splitted into plural image sensors with adjustable distance for enabling more rapid measurement by skipping the in-between part.
摘要:
An excimer laser beam irradiation apparatus capable of processing a workpiece optimally with an excimer irradiation beam even when intensity distribution of the excimer laser beam undergone multiple reflections is non-uniform. A patterning mask has light-transmissive portions for allowing the excimer laser beam to pass through and a reflecting layer for reflecting it. A high reflectivity mirror disposed in opposition to the reflecting layer reflects the excimer laser beam reflected from the reflecting layer toward the patterning mask. An imaging lens images a pattern of the excimer laser beam transmitted through the patterning mask onto a workpiece for irradiation thereof. A workpiece moving mechanism and a mask moving mechanism move the workpiece and the mask moving mechanism, respectively. A control unit controls the workpiece moving mechanism and the mask moving mechanism such that the patterning mask and the workpiece are displaced along a same axis synchronously with each other in a scan moving direction which coincides with a direction in which the excimer laser beam shifts positionally while being reflected between the patterning mask and the reflecting means, for thereby allowing the workpiece to be scanned with the excimer laser beam. The workpiece can be processed uniformly and stably in accordance with a pattern of the patterning mask with high accuracy and reliability.
摘要:
This invention relates to a transverse discharge pumping type pulse laser oscillating device including an electron capturing gas, especially to the configuration of preliminary ionization electrodes (4a, 4b, 8a, 8b). A transverse discharge exciting type pulse laser oscillating device according to this invention has preliminary ionization parts such that the dominant parts of corona discharge are directed to the part between main electrodes (1,2) and the developing lengths (1) of the corona discharge are long. The long developing lengths (1) increase the quantity of emitted ultraviolet rays and the electrodes (4a, 4b, 8a, 8b) are so arranged that the air between the main electrodes (1,2) is irradiated with ultraviolet rays emitted from near the initiating regions of the corona discharge, the initiating regions emitting light whose intensity is greater than those of other regions in the corona discharges. Thereby, a homogeneous main discharge is obtained and the efficiency of the laser oscillation is improved.
摘要:
A discharge exciting pulse laser device such as an exima laser device. The laser device is capable of accelerating the timing of rise of the voltage between an auxiliary electrode and one of main electrodes without decreasing a discharge start voltage between the main electrodes, so that the laser output power is increased and the laser oscillation efficiency is improved.
摘要:
An optical module includes a casing, a first light output unit that is fixed to the casing and generates a first light signal, a second light output unit that is fixed to the casing while an angle thereof is set to be different from that of the first light output unit and generates a second light signal having a wavelength different from that of the first light signal, a first branching filter that refracts at least any one of the first light signal and the second light signal so that optical axes of the first light signal and the second light signal are partially overlapped, and one isolator that is located at a portion where optical axes of the first light signal and the second light signal are overlapped and performs isolation on the first light signal and the second light signal.
摘要:
A semiconductor device has a two-dimensional slab photonic crystal structure in which a substrate supports a sheet-like slab layer including, sequentially stacked, a lower cladding layer, an active layer, and an upper cladding layer. A periodic refractive index profile structure, in surfaces of the stacked layers, introduces a linear defect region that serves as a waveguide. A p-type region and an n-type region in the slab layer define a pn junction surface at a predetermined angle with respect to the surfaces of the stacked layers in the slab layer.
摘要:
In an optical device, a slab layer includes an active layer sandwiched between cladding layers. The slab layer has a periodic refractive index profile structure in a two-dimensional plane, as a two-dimensional slab photonic crystal structure, and a linear defect region serving as a waveguide in the periodic refractive index profile structure. Regions having different widths of the waveguides, as segments of the waveguide, are connected in series.
摘要:
In a wavelength monitor that monitors a wavelength of laser light emitted from at least two semiconductor lasers formed in parallel on a semiconductor substrate, the wavelength monitor includes a collimating lens that collimates laser light from each of the semiconductor lasers, an etalon that is arranged so that laser light collimated by the collimating lens is capable of entering and has a periodicity, and a photodetector that receives laser light transmitted through the etalon and detects a light intensity, wherein a beam propagation angle in the etalon of laser light emitted from each of the semiconductor lasers becomes a predetermined angle obtained by formula 1.