摘要:
A semiconductor storage device is provided, which inhibits shorts between cells to improve operational reliability and contributes to high-speed operation. An active region (7) where DRAM cells are formed is defined by an isolation trench (40) formed in a silicon substrate (1). The isolation trench (40) has an isolation insulating film (4) formed therein. Each DRAM cell includes a MOS transistor having a gate electrode (12) with sidewalls (13), and a capacitor having an upper electrode (22) with sidewalls (23). A recess (41) is formed in the upper portion of the isolation trench (40), and the upper electrode (22) of the capacitor has a buried portion buried in the recess (41). The outer edge (E1) of the buried portion of the upper electrode (22) is located inside the outer edge (E2) of the sidewalls (23).
摘要:
A semiconductor storage device is provided, which inhibits shorts between cells to improve operational reliability and contributes to high-speed operation. An active region (7) where DRAM cells are formed is defined by an isolation trench (40) formed in a silicon substrate (1). The isolation trench (40) has an isolation insulating film (4) formed therein. Each DRAM cell includes a MOS transistor having a gate electrode (12) with sidewalls (13), and a capacitor having an upper electrode (22) with sidewalls (23). A recess (41) is formed in the upper portion of the isolation trench (40), and the upper electrode (22) of the capacitor has a buried portion buried in the recess (41). The outer edge (E1) of the buried portion of the upper electrode (22) is located inside the outer edge (E2) of the sidewalls (23).
摘要:
A method and system for imaging an object to be inspected and obtaining an optical image; creating a reference image from design pattern data; preparing an inspection recipe including one or more templates and parameter settings necessary for the inspection; checking the pattern and the template against each other, and selecting the reference image which corresponds to the template; detecting first and second edges in the selected reference image in accordance with the parameter setting using determined coordinates as a reference; detecting first and second edges in the optical image, this optical image corresponds to the selected reference image; and determining an inspection value by acquiring the difference between the line width of the optical image and the reference image using the first edge and second edge of the reference image and the first edge and second edges of the optical image.
摘要:
A gate interconnection portion includes a first gate interconnection portion, a second gate interconnection portion, and a third gate interconnection portion. The first gate interconnection portion is formed in parallel to a Y axis direction toward a power supply interconnection and extends to a prescribed position within an element formation region. The second gate interconnection portion is formed in parallel to a direction obliquely bent with respect to the Y-axis direction from the first gate interconnection portion toward the power supply interconnection, and extends across a boundary between the element formation region and an element isolation insulating film, which is in parallel to an X axis direction. The third gate interconnection portion further extends in parallel to the Y-axis direction from the second gate interconnection portion toward the power supply interconnection.
摘要:
A structure obtaining a desired integrated circuit by sticking together a plurality of semiconductor substrates and electrically connecting integrated circuits formed on semiconductor chips of the respective semiconductor substrates is provided, and a penetrating electrode penetrating between a main surface and a rear surface of each of the semiconductor substrates and a penetrating separation portion separating the penetrating electrode are separately arranged. Thereby, after forming an insulation trench portion for formation of the penetrating separation portion on the semiconductor substrate, a MIS•FET is formed, and then, a conductive trench portion for formation of the penetrating electrode can be formed. Therefore, element characteristics of a semiconductor device having a three-dimensional structure can be improved.
摘要:
A vehicle mirror comprises: a mirror surface; an actuator 100 which tilts the mirror surface; a plate pivot 110, which changes its direction together with the mirror surface; a spring 112, which applies a resilient force to the plate pivot 110 in the direction substantially vertical to the mirror surface; a guide spring 114 which is fitted to the end of the spring 112 at the side far from the interlocking member; a semiconductor pressure sensor 116, which is in contact with the guide spring at substantially one point so as to detect a load loaded on the one point from the pressing member; and a signal outputting portion which outputs a signal depending upon the tilted angle of the mirror surface based on the force detected by the semiconductor pressure sensor 116.
摘要:
A method for manufacturing a semiconductor integrated circuit device includes the steps of forming an isolation trench in an isolation region of a semiconductor substrate, filling the isolation trench up to predetermined middle position in its depth direction with a first insulating film deposited by a coating method, filling a remaining depth portion of the isolation trench into which the first insulating film is filled with a second insulating film, then forming a plurality of patterns on the semiconductor substrate, filling a trench forming between the plurality of patterns up to predetermined middle position in a trench depth direction with a third insulating film deposited by a coating method, and filling a remaining portion of the trench into which the third insulating film is filled with a fourth insulating film that is more difficult to etch than the third insulating film. The method may also include the step of forming dummy patters in a relatively large isolation region of isolation regions with relatively different planar dimensions before the first insulating film is deposited.
摘要:
A method for manufacturing a semiconductor integrated circuit device includes the steps of forming an isolation trench in an isolation region of a semiconductor substrate, filling the isolation trench up to predetermined middle position in its depth direction with a first insulating film deposited by a coating method, filling a remaining depth portion of the isolation trench into which the first insulating film is filled with a second insulating film, then forming a plurality of patterns on the semiconductor substrate, filling a trench forming between the plurality of patterns up to predetermined middle position in a trench depth direction with a third insulating film deposited by a coating method, and filling a remaining portion of the trench into which the third insulating film is filled with a fourth insulating film that is more difficult to etch than the third insulating film. The method may also include the step of forming dummy patters in a relatively large isolation region of isolation regions with relatively different planar dimensions before the first insulating film is deposited.
摘要:
A CVD device (100) used for depositing a silicon nitride has a structure in which a hot wall furnace (103) for thermally degrading a source gas and a chamber (101) for forming a film over a surface of a wafer (1) are separated from each other. The hot wall furnace (103) for thermally degrading the source gas is provided above the chamber (101), and a heater (104) capable of setting the inside of the furnace at a high temperature atmosphere of approximately 1200° C. is provided at the outer periphery thereof. The source gas, supplied to the hot wall furnace (103) through pipes (105) and (106), is thermally degraded in this furnace in advance, and degraded components thereof are supplied on a stage (102) of the chamber (101) to form a film on the surface of the wafer (1).
摘要:
Described is a manufacturing method of a semiconductor integrated circuit device by depositing a silicon nitride film to give a uniform thickness over the main surface of a semiconductor wafer having a high pattern density region and a low pattern density region. This is attained by, upon depositing a silicon nitride film over a substrate having a high gate-electrode-pattern density region and a low gate-electrode-pattern density region by using a single-wafer cold-wall thermal CVD reactor, setting a flow rate ratio of ammonia (NH3) to monosilane (SiH4) greater than that upon deposition of a silicon nitride film over a flat substrate.