摘要:
A method of producing a ceramic sintered body having a ceramic membrane which comprises a process of applying a precursor capable of converting into a ceramic membrane having a new function through heating onto at least a portion of a ceramic porous body to impart said function of the surface of the ceramic porous body, a process of applying a precursor capable of converting into a gas-impermeable membrane through heating over the whole surface of the porous body, a process of forming the gas-impermeable membrane by heating, a process of conducting hot isostatic pressing to the porous body, and a process of removing said gas-impermeable membrane. Ceramic sintered bodies having a dense ceramic membrane on the surface can be produced efficiently in very short processes.
摘要:
A method for forming a ceramic film comprises the steps of boiling a solution containing ceramics, dipping a base material into the solution, taking the base material out of the solution and drying the base material taken out of the solution in the presence of vapor of said boiling solution. The solution is a solution, in which ceramics is dispersed or dissolved. The solution is a solution, in which a precursor of ceramics is dispersed or dissolved.
摘要:
In the method of invention, the formability is imparted to the slurry of a metal or ceramic powder by employing a porous mold and removing the dispersion medium through the evaporation or thermal decomposition thereof, or by using a silazane oil as the dispersion medium and curing it by heating. Since the phase change usually accompanying volume change does not occur in the dispersion medium, strain and deformation rarely occur in the molded body. As result, the sintered body obtained has high dimensional accuracy.
摘要:
A method for manufacturing carbon material having good resistance to oxidation, comprising coating carbon material, which is a sintered body or a porous body, with an inorganic polysilazane; heating the carbon material coated with the inorganic polysilazane in an inert atmosphere to form amorphous silicon nitride on the surface of the carbon material; and reheating the heated carbon material in a non-nitriding and non-oxidizing atmosphere, the amorphous silicon nitride being decomposed and silicon carbide being formed on the surface of the carbon material; the reheating being conducted at a temperature of 1300.degree. C. to 1900.degree. C. and the non-nitriding and non-oxidizing atmosphere having a partial pressure of nitrogen determined with reference to a graph wherein the abscissa is a temperature in .degree.C. and the ordinate is partial pressure of nitrogen in atmospheres, the partial pressure being defined within an area under a line connecting a first point corresponding to 1300.degree. C. and 0.1 atmospheres and a second point corresponding to 1900.degree. C. and 20 atmospheres.
摘要:
A method of molding polysilazane which includes heating a liquid sheet composed of liquid polysilazane alone or containing not more than 30 wt. % of a ceramic powder or a ceramic precursor to form a highly viscous sheet having a viscosity coefficient of 10.sup.4 to 10.sup.6 poise, fitting the highly viscous sheet to a forming mold, and heating to set the sheet. According to the method of the invention, molded bodies are easily obtained which have relatively uniform thickness, and are excellent in transferability, homogeneous and show less defects.
摘要:
A method of producing a .beta.-sialon fine powder which comprises using a silane compound represented by the general formula of SiH.sub.x Cl.sub.4-x (0.ltoreq.x.ltoreq.4) as a Si source, aluminum chloride as an Al source and an ether represented by the general formula of ROR' (R,R'=C.sub.y H.sub.2y+1, 1.ltoreq.y.ltoreq.5) as an oxygen source respectively, dissolving them in an organic solvent capable of dissolving them to obtain a solution, introducing ammonia gas into the solution to produce a precipitates, and burning the precipitates in a nonoxidative atmosphere. In the .beta.-sialon fine powder obtained by the method of the invention, respective elements of Si, Al, O and N are uniformly distributed in a chemical viewpoint. A high density high strength sintered body can be produced even at a relatively low temperature by using the .beta.-sialon fine powder.
摘要:
In a process for producing a sintered body using a gas-impermeable membrane formed by softening of a powder layer provided on the surface of a porous body, a metal polymer selected from polysilanes, polycarbosilanes, polysilazanes and hydrolyzates of metal alkoxides is added as a binder to the powder layer. According to the process of the invention, the gas-impermeable membrane is formed with high reliability, and high density sintered bodies can be obtained in a simple process.
摘要:
A solar cell including a substrate 1, a nanopillar 11 having diameter D1 connected to the substrate 1, and a nanopillar 12 having diameter D2 connected to the substrate 1 is characterized in that D2 is greater than D1 in order to realize a solar cell having, as the surface structure, a nanopillar array structure with which it is possible to prevent reflection within the broad wavelength region of solar light. A nanopillar array structure 21 formed from two types of nanopillars having different diameters has a point of minimum reflectivity of a nanopillar array structure formed from the nanopillar 11 having diameter D1 and a point of minimum reflectivity of a nanopillar array structure formed from the nanopillar 12 having diameter D2 and therefore, is capable of preventing reflection within the broad wavelength region of solar light.
摘要:
A method for manufacturing a semiconductor device includes placing a sheet containing a fibrous material having at least one outer surface having a metal on a semiconductor chip-mounting region of a substrate; forming a bonding layer containing a fusible metal on the semiconductor chip-mounting region; placing a semiconductor chip on the semiconductor chip-mounting region; and bonding the semiconductor chip to the semiconductor chip-mounting region with the fusible metal-containing bonding layer by heating.
摘要:
A liquid ejection head substrate is manufactured by forming a wiring pattern on one surface of a substrate, forming an etching mask layer on the other surface of the substrate, forming a positioning reference mark on the etching mask layer by means of a laser, forming an opening pattern groove running through the etching mask layer and having a bottom in the inside of the silicon substrate, using the positioning reference mark, and forming a liquid supply port running through the silicon substrate by etching the silicon substrate from the opening pattern groove to the one surface by means of crystal anisotropic etching.