摘要:
A solid-liquid interdiffusion bonding structure of a thermoelectric module and a fabricating method thereof are provided. The method includes coating a silver, nickel, or copper layer on surfaces of a thermoelectric component and an electrode plate, and then coating a tin layer. A thermocompression treatment is performed on the thermoelectric component and the electrode plate, such that the melted tin layer reacts with the silver, nickel, or copper layer to form a silver-tin intermetallic compound, a nickel-tin intermetallic compound, or a copper-tin intermetallic compound. After cooling, the thermoelectric component and the electrode plate are bonded together.
摘要:
A heat sink and heat spreader bonding structure includes a metal heat sink, a metal heat spreader, and an eutectic structure formed between the heat sink and the heat spreader by heating the heat sink and the heat spreader to a specific temperature of the eutectic temperature of the heat sink and the heat spreader but below the respective melting point of the heat sink and the heat spreader to cause the internal metal atoms of the heat sink and heat spreader to be rearranged. This bonding structure maintains the heat transfer efficiency of the bonding layer between the heat sink and the heat spreader, eliminates formation of crevice, heat resistance, and oxidation in the bonding layer.
摘要:
A copper-based alloy wire made of a material selected from the group consisting of a copper-gold alloy, a copper-palladium alloy and a copper-gold-palladium alloy is provided. The alloy wire has a polycrystalline structure of a face-centered cubic lattice and consists of a plurality of equi-axial grains. The quantity of grains having annealing twins is 10 percent or more of the total quantity of the grains of the copper-based alloy wire.
摘要:
The present invention provides a process for manufacturing an electromagnetic interference shielding metallic foil cladded plastic outer shell product. A first side of a superplastic alloy foil is coated with an adhesive and then the foil is placed foil in a first half mold to allow the foil to be initially superplastically formed. A second half mold attached to a nozzle of an injection machine is covered onto the first half mold, and the two half molds are closed to further deform superplastic alloy foil. Softened plastic is introduced from the injection machine to a mold cavity between the foil and the second half mold, such that the superplastic alloy foil covered on the first half mold is completely formed and the softened plastic adheres on the adhesive-coated side of the superplastic alloy foil to form an electromagnetic interference shielding metallic foil cladded plastic outer shell product. Two types of products can be obtained, that is, the superplastic alloy foil can be either the outer wall or inner wall. Moreover, the final metallic plastic product can not only have as intricate a shape as an ordinary plastic product, but also a shielding effectiveness as high as an ordinary metallic shield.
摘要:
A conductor removal process is described, which is applied to a substrate that has thereon a plurality of patterns and a blanket conductor layer covering the patterns. An upper portion of the blanket conductor layer entirely over the patterns is oxidized to form a dielectric layer. A CMP step is performed to remove the dielectric layer and a portion of the remaining conductor layer in turn and thereby expose the patterns.
摘要:
The present invention provides a novel process for making a radially arranged aluminum foil-filled plastic pellet for shielding against electromagnetic interference, comprising sandwiching a plastic matrix in between two layers of aluminum foil to form an aluminum/plastic/aluminum laminated sheet; slicing the laminated sheet into a plurality of aluminum/plastic/aluminum laminated strips; dividing the plurality of laminated strips into at least one group, each group containing 3 to 20 radially arranged strips; moisturizing and binding at least one group of laminated strips with a molten plastic matrix to form at least one radially arranged aluminum foil-filled plastic bar; and cutting at least one plastic bar into radially arranged aluminum foil-filled plastic pellets. By the present invention, the cost of making the conductive plastic pellets can be decreased, the amount of aluminum foil in the pellet can be greatly increased, and the breakage of the aluminum foil in the die can be prevented.
摘要:
The present invention provides a process and apparatus for manufacturing an electromagnetic interference shielding metallic foil cladded plastic product. The process comprises (a) coating one side of a superplastic alloy plate with a coupling agent or a hot melt adhesive; (b) placing the coupling agent- or hot melt adhesive-coated superplastic alloy plate in a mold, and superplastically forming the superplastic alloy plate to a superplastic alloy foil with a predetermined shape, such that another side of the superplastic alloy foil is attached to the mold and the coupling agent- or hot melt adhesive-coated side of the superplastic alloy foil is spaced apart from the mold to form a mold cavity, wherein an injection machine is attached to the mold cavity, and wherein the injection machine is capable of injecting softened plastic into the mold cavity; (c) introducing softened plastic from the injection machine to the mold cavity, such that plastic adheres on the coupling agent- or hot melt adhesive-coated side of the superplastic alloy foil, and an electromagnetic interference shielding metallic foil cladded plastic product is formed; and (d) removing the plastic product from the mold. The final metallic plastic product can not only have as intricate a shape as an ordinary plastic product, but also has a shielding effectiveness as high as an ordinary metallic shield.
摘要:
The present invention provides a superplastic alloy-containing conductive plastic article for shielding electromagnetic interference. The conductive plastic article is a three-layer structure, in which the outer layers are plastic material, and the inner layer is a superplastic alloy. The requirements for the raw materials are that the melting point of the superplastic alloy is higher than the softening point of the plastic, and the superplastic alloy has superplasticity at a temperature higher than the softening point of the plastic. The conductive plastic article can be manufactured in one processing stage, has the same shielding effectiveness as that of a conventional metal plate article, and can take a delicate and complicated form as that of a conventional plastic article. Moreover, the superplastic alloy contained therein has a uniform thickness and good adherence to plastic.
摘要:
An active solder is revealed. The active solder includes an active material and a metal substrate. There are two kinds of active materials, titanium together with rare earth elements and magnesium. The metal substrate is composed of a main component and an additive. The main component is tin-zinc alloy and the additive is selected from bismuth, indium, silver, copper or their combinations. The active solder enables targets and backing plates to be joined with each other directly in the atmosphere. The target is ceramic or aluminum with low wetting properties. The bonding temperature of the active solder ranges from 150° C. to 200° C. so that the problem of thermal stress can be avoided.
摘要:
The present invention provides novel kind of aluminum laminally filled plastic pellets and a process and apparatus for manufacturing the plastic pellets. The process includes coating the upper and lower surfaces of each of the substantially parallel lined aluminum foil layers with a coupling agent; drying the aluminum foil layers; introducing a molten plastic matrix to the space between each two aluminum foil layers and the outer surfaces of the most outside two aluminum foil layers to moisturize and bind the aluminum foil layers; reducing the thickness of the aluminum foil layers to form a continuous laminally filled plastic composite plate; and cooling and cutting the composite plate into aluminum laminally filled plastic pellets of a predetermined size. The aluminum contained in the plastic pellet maintains a high aspect ratio, therefore, reducing the loading amount of the aluminum required to provide good EMI shielding of the plastic pellets, while not adversely affeting the mechanical properties of the EMI plastic product.