Abstract:
Provided is an enhancement mode GaN-based transistor device including an epitaxial stacked layer disposed on a substrate; a source layer and a drain layer disposed on a surface of the epitaxial stacked layer; a p-type metal oxide layer disposed between the source layer and the drain layer; and a gate layer disposed on the p-type metal oxide layer. Besides, the p-type metal oxide layer includes a body part disposed on the surface of the epitaxial stacked layer, and a plurality of extension parts connecting the body part and extending into the epitaxial stacked layer. With such structure, the enhancement mode GaN-based transistor device can effectively suppress generation of the gate leakage current.
Abstract:
A light emitting diode device may include a carrier, a p-type and n-type semiconductor layers, an active layer, a first electrode and a second electrode is provided. The carrier has a growth surface and at least one nano-patterned structure on the growth surface, in which the carrier includes a substrate and a semiconductor capping layer disposed between the substrate and the n-type semiconductor layer. The n-type semiconductor layer and the p-type semiconductor layer are located over the growth surface of the carrier. The active layer is located between the n-type and p-type semiconductor layers, in which a wavelength λ of light emitted by the active layer is 222 nm≦λ≦405 nm, and a defect density of the active layer is less than or equal to 5×1010/cm2. The first and second electrodes are respectively connected to the n-type and p-type semiconductor layers. A carrier for carrying a semiconductor layer is also provided.
Abstract:
A nitride semiconductor device includes a silicon substrate, a nucleation layer, a first buffer layer, a first type nitride semiconductor layer, a light-emitting layer and a second type nitride semiconductor layer is provided. The nucleation layer is disposed on the silicon substrate. The first buffer layer is disposed on the nucleation layer. The first buffer layer includes a dopant and Gallium, and an atomic radius of the dopant is larger than an atomic radius of Gallium. The first type nitride semiconductor layer is disposed over the first buffer layer. The light-emitting layer is disposed on the first type nitride semiconductor layer. The second type nitride semiconductor layer is disposed on the light-emitting layer.
Abstract:
A nitride semiconductor structure including a silicon substrate, a nucleation layer, a buffer layer and a nitride semiconductor layer is provided. The nucleation layer is disposed on the silicon substrate. The buffer layer is disposed on the nucleation layer, in which the buffer layer includes n sub-buffer layers where n≧2, and each of the sub-buffer layers has island structures. The nitride semiconductor layer is disposed on the buffer layer.
Abstract:
A semiconductor structure including a silicon substrate, a nucleation layer and a plurality of multi-layer sets is provided. The nucleation layer is disposed on the silicon substrate. The multi-layer sets are stacked over the nucleation layer, and each of the multi-layer sets includes a plurality of first sub-layers and a plurality of second sub-layers stacked alternately. A material of the first sub-layers and the second sub-layers includes Al-containing III-V group compound, wherein an average content of aluminum of the multi-layer sets decreases as a minimum distance between each of the multi-layer sets and the silicon substrate increases, and an aluminum content of the first sub-layers is different from an aluminum content of the second sub-layers.
Abstract:
A nitride semiconductor structure including a silicon substrate, a nucleation layer, a buffer layer and a nitride semiconductor layer is provided. The nucleation layer is disposed on the silicon substrate. The buffer layer is disposed on the nucleation layer, in which the buffer layer includes n sub-buffer layers where n≧2, and each of the sub-buffer layers has island structures. The nitride semiconductor layer is disposed on the buffer layer.
Abstract:
A nitride semiconductor structure including a silicon substrate, a nucleation layer, a discontinuous defect blocking layer, a buffer layer and a nitride semiconductor layer is provided. The nucleation layer disposed on the silicon substrate, wherein the nucleation layer has a defect density d1. A portion of the nucleation layer is covered by the discontinuous defect blocking layer. The buffer layer is disposed on the discontinuous defect blocking layer and a portion of the nucleation layer that is not covered by the discontinuous defect blocking layer. The nitride semiconductor layer is disposed on the buffer layer. A ratio of a defect density d2 of the nitride semiconductor layer to the defect density d1 of the nucleation layer is less than or equal to about 0.5, at a location where about 1 micrometer above the interface between the nitride semiconductor layer and the buffer layer.
Abstract:
A carrier for carrying a semiconductor layer having a growth surface and at least one nano-patterned structure on the growth surface is provided. The at least one nano-patterned structure on the growth surface of the carrier has a plurality of mesas, a recess is formed between two adjacent mesas, in which a depth of the recess ranges from 10 nm to 500 nm, and a dimension of the mesa ranges from 10 nm to 800 nm.
Abstract:
A nitride light emitting diode structure including a first type doped semiconductor layer, a second type doped semiconductor layer, a light emitting layer, a first metal pad, a second metal pad and a magnetic film is disclosed. The magnetic film disposed between the first metal pad and the first type doped semiconductor layer includes a zinc oxide (ZnO) layer doped with cobalt (Co). The content of Co in the ZnO layer ranges from 5% to 25% by molar ratio.
Abstract:
A light emitting diode device may include a carrier, a p-type and n-type semiconductor layers, an active layer, a first electrode and a second electrode is provided. The carrier has a growth surface and at least one nano-patterned structure on the growth surface, in which the carrier includes a substrate and a semiconductor capping layer disposed between the substrate and the n-type semiconductor layer. The n-type semiconductor layer and the p-type semiconductor layer are located over the growth surface of the carrier. The active layer is located between the n-type and p-type semiconductor layers, in which a wavelength λ of light emitted by the active layer is 222 nm≦λ≦405 nm, and a defect density of the active layer is less than or equal to 5×1010/cm2. The first and second electrodes are respectively connected to the n-type and p-type semiconductor layers. A carrier for carrying a semiconductor layer is also provided.