Abstract:
An apparatus is described. The apparatus includes a semiconductor chip that includes logic circuitry, embedded dynamic random access memory (DRAM) cells and embedded ferroelectric random access memory (FeRAM) cells.
Abstract:
Embodiments herein describe techniques for a semiconductor device including a substrate, a first inter-level dielectric (ILD) layer above the substrate, and a second ILD layer above the first ILD layer. A first capacitor and a second capacitor are formed within the first ILD layer and the second ILD layer. A first top plate of the first capacitor and a second top plate of the second capacitor are formed at a boundary between the first ILD layer and the second ILD layer. The first capacitor and the second capacitor are separated by a dielectric area in the first ILD layer. The dielectric area includes a first dielectric area that is coplanar with the first top plate or the second top plate, and a second dielectric area above the first dielectric area and to separate the first top plate and the second top plate. Other embodiments may be described and/or claimed.
Abstract:
Described are apparatuses for improving resistive memory energy efficiency. An apparatus performs data-driven write to make use of asymmetric write switch energy between write0 and write1 operations. The apparatus comprises: a resistive memory cell coupled to a bit line and a select line; a first pass-gate coupled to the bit line; a second pass-gate coupled to the select line; and a multiplexer operable by input data, the multiplexer to provide a control signal to the first and second pass-gates or to write drivers according to logic level of the input data. An apparatus comprises circuit for performing read before write operation which avoids unnecessary writes with an initial low power read operation. An apparatus comprises circuit to perform self-controlled write operation which stops the write operation as soon as bit-cell flips. An apparatus comprises circuit for performing self-controlled read operation which stops read operation as soon as data is detected.
Abstract:
Described is an apparatus and system for improving write margin in memory cells. In one embodiment, the apparatus comprises: a first circuit to provide a pulse signal with a width; and a second circuit to receive the pulse signal and to generate a power supply for the memory cell, wherein the second circuit to reduce a level of the power supply below a data retention voltage level of the memory cell for a time period corresponding to the width of the pulse signal. In one embodiment, the apparatus comprises a column of memory cells having a high supply node and a low supply node; and a charge sharing circuit positioned in the column of memory cells, the charge sharing circuit coupled to the high and low supply nodes, the charge sharing circuit operable to reduce direct-current (DC) power consumption.
Abstract:
Embodiments herein describe techniques for a semiconductor device including a substrate. A first capacitor includes a first top plate and a first bottom plate above the substrate. The first top plate is coupled to a first metal electrode within an inter-level dielectric (ILD) layer to access the first capacitor. A second capacitor includes a second top plate and a second bottom plate, where the second top plate is coupled to a second metal electrode within the ILD layer to access the second capacitor. The second metal electrode is disjoint from the first metal electrode. The first capacitor is accessed through the first metal electrode without accessing the second capacitor through the second metal electrode. Other embodiments may be described and/or claimed.
Abstract:
Described are apparatuses for improving resistive memory energy efficiency. An apparatus performs data-driven write to make use of asymmetric write switch energy between write0 and write1 operations. The apparatus comprises: a resistive memory cell coupled to a bit line and a select line; a first pass-gate coupled to the bit line; a second pass-gate coupled to the select line; and a multiplexer operable by input data, the multiplexer to provide a control signal to the first and second pass-gates or to write drivers according to logic level of the input data. An apparatus comprises circuit for performing read before write operation which avoids unnecessary writes with an initial low power read operation. An apparatus comprises circuit to perform self-controlled write operation which stops the write operation as soon as bit-cell flips. An apparatus comprises circuit for performing self-controlled read operation which stops read operation as soon as data is detected.
Abstract:
Described is an apparatus and system for improving write margin in memory cells. In one embodiment, the apparatus comprises: a first circuit to provide a pulse signal with a width; and a second circuit to receive the pulse signal and to generate a power supply for the memory cell, wherein the second circuit to reduce a level of the power supply below a data retention voltage level of the memory cell for a time period corresponding to the width of the pulse signal. In one embodiment, the apparatus comprises a column of memory cells having a high supply node and a low supply node; and a charge sharing circuit positioned in the column of memory cells, the charge sharing circuit coupled to the high and low supply nodes, the charge sharing circuit operable to reduce direct-current (DC) power consumption.
Abstract:
Described is an apparatus including memory cell with retention using resistive memory. The apparatus comprises: memory element including a first inverting device cross-coupled to a second inverting device; a restore circuit having at least one resistive memory element, the restore circuit coupled to an output of the first inverting device; a third inverting device coupled to the output of the first inverting device; a fourth inverting device coupled to an output of the third inverting device; and a save circuit having at least one resistive memory element, the save circuit coupled to an output of the third inverting device.
Abstract:
Described are apparatuses for improving resistive memory energy efficiency. An apparatus performs data-driven write to make use of asymmetric write switch energy between write0 and write1 operations. The apparatus comprises: a resistive memory cell coupled to a bit line and a select line; a first pass-gate coupled to the bit line; a second pass-gate coupled to the select line; and a multiplexer operable by input data, the multiplexer to provide a control signal to the first and second pass-gates or to write drivers according to logic level of the input data. An apparatus comprises circuit for performing read before write operation which avoids unnecessary writes with an initial low power read operation. An apparatus comprises circuit to perform self-controlled write operation which stops the write operation as soon as bit-cell flips. An apparatus comprises circuit for performing self-controlled read operation which stops read operation as soon as data is detected.