LATERAL SILICON NANOSPIKES FABRICATED USING METAL-ASSISTED CHEMICAL ETCHING

    公开(公告)号:US20190045777A1

    公开(公告)日:2019-02-14

    申请号:US16162669

    申请日:2018-10-17

    摘要: The present disclosure relates to methods for forming an antimicrobial nanostructure and antimicrobial articles. The methods may include: providing a master template of a layout of the antimicrobial nanostructure on a silicon substrate, depositing a silicon nitride layer on a top surface of the silicon substrate, forming a patterned lithographic resist mask layer on a top surface of the silicon nitride layer, generating certain silicon pillars according to the patterned lithographic resist mask using a resist and reactive ion etching, forming certain lateral silicon nanospikes on the silicon pillars by performing metal assisted chemical etching (MacEtch), and removing the silicon nitride layer and bonding a top cover glass on the silicon pillars to form the antimicrobial nanostructure having lateral silicon nanospikes. The antimicrobial article may include a component of an electronic device, a biomedical article, a household product, a food grade article, a transportation component, or a public building component.

    LATERAL SILICON NANOSPIKES FABRICATED USING METAL-ASSISTED CHEMICAL ETCHING

    公开(公告)号:US20170280709A1

    公开(公告)日:2017-10-05

    申请号:US15091074

    申请日:2016-04-05

    IPC分类号: A01N25/00

    摘要: The present disclosure relates to methods for forming an antimicrobial nanostructure and antimicrobial articles. The methods may include: providing a master template of a layout of the antimicrobial nanostructure on a silicon substrate, depositing a silicon nitride layer on a top surface of the silicon substrate, forming a patterned lithographic resist mask layer on a top surface of the silicon nitride layer, generating certain silicon pillars according to the patterned lithographic resist mask using a resist and reactive ion etching, forming certain lateral silicon nanospikes on the silicon pillars by performing metal assisted chemical etching (MacEtch), and removing the silicon nitride layer and bonding a top cover glass on the silicon pillars to form the antimicrobial nanostructure having lateral silicon nanospikes. The antimicrobial article may include a component of an electronic device, a biomedical article, a household product, a food grade article, a transportation component, or a public building component.