摘要:
An electrical device that includes a p-type semiconductor device having a p-type work function gate structure including a first high-k gate dielectric, a first metal containing buffer layer, a first titanium nitride layer having a first thickness present on the metal containing buffer layer, and a first gate conductor contact. A mid gap semiconductor device having a mid gap gate structure including a second high-k gate dielectric, a second metal containing buffer layer, a second titanium nitride layer having a second thickness that is less than the first thickness present, and a second gate conductor contact. An n-type semiconductor device having an n-type work function gate structure including a third high-k gate dielectric present on a channel region of the n-type semiconductor device, a third metal containing buffer layer on the third high-k gate dielectric and a third gate conductor fill present atop the third metal containing buffer layer.
摘要:
Compositions of matter, compounds, articles of manufacture and processes to reduce or substantially eliminate EM and/or stress migration, and/or TDDB in copper interconnects in microelectronic devices and circuits, especially a metal liner around copper interconnects comprise an ultra thin layer or layers of Mn alloys containing at least one of W and/or Co on the metal liner. This novel alloy provides EM and/or stress migration resistance, and/or TDDB resistance in these copper interconnects, comparable to thicker layers of other alloys found in substantially larger circuits and allows the miniaturization of the circuit without having to use thicker EM and/or TDDB resistant alloys previously used thereby enhancing the miniaturization, i.e., these novel alloy layers can be miniaturized along with the circuit and provide substantially the same EM and/or TDDB resistance as thicker layers of different alloy materials previously used that lose some of their EM and/or TDDB resistance when used as thinner layers.
摘要:
Multilayer dielectric structures are provided having silicon nitride (SiN) and silicon oxynitride (SiNO) films for use as capping layers, liners, spacer barrier layers, and etch stop layers, and other components of semiconductor nano-devices. For example, a semiconductor structure includes a multilayer dielectric structure having multiple layers of dielectric material including one or more SiN layers and one or more SiNO layers. The layers of dielectric material in the multilayer dielectric structure have a thickness in a range of about 0.5 nanometers to about 3 nanometers.
摘要:
Multilayer dielectric structures are provided having silicon nitride (SiN) and silicon oxynitride (SiNO) films for use as capping layers, liners, spacer barrier layers, and etch stop layers, and other components of semiconductor nano-devices. For example, a semiconductor structure includes a multilayer dielectric structure having multiple layers of dielectric material including one or more SiN layers and one or more SiNO layers. The layers of dielectric material in the multilayer dielectric structure have a thickness in a range of about 0.5 nanometers to about 3 nanometers.
摘要:
A method of forming electrically conductive structures that includes forming a copper containing layer including a barrier forming element, and applying a first anneal to the copper containing layer. The first anneal increases grain size of the copper in the copper containing layer. The copper containing layer is etched to provide a plurality of copper containing lines. A dielectric fill is deposited in the space between adjacent copper containing lines. A second anneal is applied to the plurality of copper containing lines. During the second anneal the barrier forming element diffuse to an interface between sidewalls of the copper containing lines and the dielectric fill to form a barrier layer along the sidewalls of the copper containing lines.
摘要:
A method of forming electrically conductive structures that includes forming a copper containing layer including a barrier forming element, and applying a first anneal to the copper containing layer. The first anneal increases grain size of the copper in the copper containing layer. The copper containing layer is etched to provide a plurality of copper containing lines. A dielectric fill is deposited in the space between adjacent copper containing lines. A second anneal is applied to the plurality of copper containing lines. During the second anneal the barrier forming element diffuse to an interface between sidewalls of the copper containing lines and the dielectric fill to form a barrier layer along the sidewalls of the copper containing lines.
摘要:
Equivalent oxide thickness (EOT) scaled high k/metal gate stacks are provided in which the capacitance bottleneck of the interfacial layer is substantially eliminated, with minimal compromise on the mobility of carriers in the channel of the device. In one embodiment, the aforementioned EOT scaled high k/metal gate stacks are achieved by increasing the dielectric constant of the interfacial layer to a value that is greater than the originally formed interfacial layer, i.e., the interfacial layer prior to diffusion of a high k material dopant element therein. In another embodiment, the aforementioned scaled high k/metal gate stacks are achieved by eliminating the interfacial layer from the structure. In yet another embodiment, the aforementioned high k/metal gate stacks are achieved by both increasing the dielectric constant of the interfacial layer and reducing/eliminating the interfacial layer.
摘要:
Ion implantation to change an effective work function for dual work function metal gate integration is presented. One method may include forming a high dielectric constant (high-k) layer over a first-type field effect transistor (FET) region and a second-type FET region; forming a metal layer having a first effective work function compatible for a first-type FET over the first-type FET region and the second-type FET region; and changing the first effective work function to a second, different effective work function over the second-type FET region by implanting a species into the metal layer over the second-type FET region.
摘要:
Compositions of matter, compounds, articles of manufacture and processes to reduce or substantially eliminate EM and/or stress migration, and/or TDDB in copper interconnects in microelectronic devices and circuits, especially a metal liner around copper interconnects comprise an ultra thin layer or layers of Mn alloys containing at least one of W and/or Co on the metal liner. This novel alloy provides EM and/or stress migration resistance, and/or TDDB resistance in these copper interconnects, comparable to thicker layers of other alloys found in substantially larger circuits and allows the miniaturization of the circuit without having to use thicker EM and/or TDDB resistant alloys previously used thereby enhancing the miniaturization, i.e., these novel alloy layers can be miniaturized along with the circuit and provide substantially the same EM and/or TDDB resistance as thicker layers of different alloy materials previously used that lose some of their EM and/or TDDB resistance when used as thinner layers.
摘要:
A method of forming electrically conductive structures that includes forming a copper containing layer including a barrier forming element, and applying a first anneal to the copper containing layer. The first anneal increases grain size of the copper in the copper containing layer. The copper containing layer is etched to provide a plurality of copper containing lines. A dielectric fill is deposited in the space between adjacent copper containing lines. A second anneal is applied to the plurality of copper containing lines. During the second anneal the barrier forming element diffuse to an interface between sidewalls of the copper containing lines and the dielectric fill to form a barrier layer along the sidewalls of the copper containing lines.