摘要:
The invention provides for translating two-dimensional microfabrication technology into the third dimension. Two-dimensional templates are fabricated using high-resolution molding processes. These templates are then bonded to form three-dimensional scaffold structures with closed lumens. The scaffolds can serve as the template for cell adhesion and growth by cells that are added to the scaffolds through the vessels, holes or pores. These scaffolds can be formed by layering techniques, to interconnect flat template sheets to build up a fully vascularized organ.
摘要:
Methods and materials for making complex, living, vascularized tissues for organ and tissue replacement, especially complex and/or thick structures, such as liver tissue is provided. Tissue lamina is made in a system comprising an apparatus having (a) a first mold or polymer scaffold, a semi-permeable membrane, and a second mold or polymer scaffold, wherein the semi-permeable membrane is disposed between the first and second molds or polymer scaffolds, wherein the first and second molds or polymer scaffolds have means defining microchannels positioned toward the semi-permeable membrane, wherein the first and second molds or polymer scaffolds are fastened together; and (b) animal cells. Methods for producing complex, three-dimensional tissues or organs from tissue lamina are also provided.
摘要:
Methods and materials for making complex, living, vascularized tissues for organ and tissue replacement, especially complex and/or thick structures, such as liver tissue is provided. Tissue lamina is made in a system comprising an apparatus having (a) a first mold or polymer scaffold, a semi-permeable membrane, and a second mold or polymer scaffold, wherein the semi-permeable membrane is disposed between the first and second molds or polymer scaffolds, wherein the first and second molds or polymer scaffolds have means defining microchannels positioned toward the semi-permeable membrane, wherein the first and second molds or polymer scaffolds are fastened together; and (b) animal cells. Methods for producing complex, three-dimensional tissues or organs from tissue lamina are also provided.
摘要:
Methods and materials for making complex, living, vascularized tissues for organ and tissue replacement, especially complex and/or thick structures, such as liver tissue is provided. Tissue lamina is made in a system comprising an apparatus having (a) a first mold or polymer scaffold, a semi-permeable membrane, and a second mold or polymer scaffold, wherein the semi-permeable membrane is disposed between the first and second molds or polymer scaffolds, wherein the first and second molds or polymer scaffolds have means defining microchannels positioned toward the semi-permeable membrane, wherein the first and second molds or polymer scaffolds are fastened together; and (b) animal cells. Methods for producing complex, three-dimensional tissues or organs from tissue lamina are also provided.
摘要:
Methods and materials for making complex, living, vascularized tissues for organ and tissue replacement, especially complex and/or thick structures, such as liver tissue is provided. Tissue lamina is made in a system comprising an apparatus having (a) a first mold or polymer scaffold, a semi-permeable membrane, and a second mold or polymer scaffold, wherein the semi-permeable membrane is disposed between the first and second molds or polymer scaffolds, wherein the first and second molds or polymer scaffolds have means defining microchannels positioned toward the semi-permeable membrane, wherein the first and second molds or polymer scaffolds are fastened together; and (b) animal cells. Methods for producing complex, three-dimensional tissues or organs from tissue lamina are also provided.
摘要:
A circular rear view eyewear mirror, approximately 9 min. in diameter, consisting of a reflective surface permanently attached with epoxy adhesive to a cylindrical plastic base with one end obliquely cross-sectioned to form an ellipse. The angle formed by this oblique cross-sectioning of the base allows the rear view eyewear mirror to fit differing types of eyewear, including modern wrap-around sports eyewear. The elliptical end is attached semi-permanently to the rearward surface of the eyewear lens with double-backed adhesive tape. These elements, when assembled, are considered one piece in use and have no moving parts in relation to each other. The rear view eyewear mirror may be angularly adjusted by clockwise or counter-clockwise rotation before semi-permanent attachment by rotation upon the rearward surface of the eyewear lens. This adjustment of the rear view eyewear mirror allows for angular adjustment of the image seen by the wearer. Normal forward vision through the eyewear lens is not impeded by the rear view eyewear mirror. The attachment of the rear view eyewear mirror is semi-permanent because the mirror may be easily removed and re-positioned without scratching or marring the rearward surface of the eyewear lens. The adjustment of the rear view eyewear mirror, once semi-permanently attached to the eyewear lens, remains unaffected by normal use of the eyewear and holds its initial adjustment even when bumped or jarred. The rear view eyewear mirror may be attached to either the right or left eyewear lens for use by the right or left eye, or both.