摘要:
The present invention recognizes that the determination of ion transport function or properties using direct detection methods, such as whole cell recording or single channel recording, are preferable to methods that utilize indirect detection methods, such as FRET based detection system. The present invention provides biochips and other fluidic components and methods of use that allow for the direct analysis of ion transport function or properties using microfabricated structures that can allow for automated detection of ion transport function or properties. These biochips and fluidic components and methods of use thereof are particularly appropriate for automating the detection of ion transport function or properties, particularly for screening purposes.
摘要:
The present invention recognizes that the determination of ion transport function or properties using direct detection methods, such as whole cell recording or single channel recording, are preferable to methods that utilize indirect detection methods, such as FRET based detection system. The present invention provides biochips and other fluidic components and methods of use that allow for the direct analysis of ion transport function or properties using microfabricated structures that can allow for automated detection of ion transport function or properties. These biochips and fluidic components and methods of use thereof are particularly appropriate for automating the detection of ion transport function or properties, particularly for screening purposes.
摘要:
The present invention recognizes that the determination of an ion transport function or property using direct detection methods, such as patch-clamps, whole cell recording or single channel recording, are preferable to methods that utilize indirect detection methods, such as FRET based detection system. The present invention provides biochips and methods of use that allow for the direct analysis of ion transport functions or properties using microfabricated structures that can allow for automated detection of one or more ion transport functions or properties. These biochips and methods of use thereof are particularly appropriate for automating the detection of ion transport functions or properties, particularly for screening purposes.
摘要:
The present invention recognizes that the determination of an ion transport function or property using direct detection methods, such as patch-clamps, whole cell recording or single channel recording, are preferable to methods that utilize indirect detection methods, such as FRET based detection system. The present invention provides biochips and methods of use that allow for the direct analysis of ion transport functions or properties using microfabricated structures that can allow for automated detection of one or more ion transport functions or properties. These biochips and methods of use thereof are particularly appropriate for automating the detection of ion transport functions or properties, particularly for screening purposes.
摘要:
This invention relates generally to the field of moiety or molecule isolation, detection and manipulation and library synthesis. In particular, the invention provides a microdevice, which microdevice comprises: a) a magnetizable substance; and b) a photorecognizable coding pattern, wherein said microdevice has a preferential axis of magnetization. Systems and methods for isolating, detecting and manipulating moieties and synthesizing libraries using the microdevices are also provided.
摘要:
Microdevices containing a predetermined preferential axis of magnetization are disposed in an array having discreet regions. Under influence of a magnetic field, the microdevices can have at least twelve discrete orientations, and can advantageously be flipped upside down in place. Microdevices can be coded in a manner that supports a coding space of at least 102, 103, 106 or even 1010 or more choices, and can include one or more chemically reactive sites. The regions can be defined by long and short bars, in which microdevices span gaps between the longer bars, and the shorter bars measure less than 60% of such gaps. Preferred embodiments are also provided to produce microfabricated microdevices for magnetic assembly-based arraying.
摘要:
Microdevices containing a predetermined preferential axis of magnetization are disposed in an array having discreet regions. Under influence of a magnetic field, the microdevices can have at least twelve discrete orientations, and can advantageously be flipped upside down in place. Microdevices can be coded in a manner that supports a coding space of at least 102, 103, 106 or even 1010 or more choices, and can include one or more chemically reactive sites. The regions can be defined by long and short bars, in which microdevices span gaps between the longer bars, and the shorter bars measure less than 60% of such gaps. Preferred embodiments are also provided to produce microfabricated microdevices for magnetic assembly-based arraying.
摘要:
Particles or other microdevices are disposed in an array having discreet regions (e.g. magnetic bars), oriented within a magnetic field, and then sorted through application of a removing force under conditions that remove a proper subset of the microdevices from the array as a function of differing orientations of the microdevices. Methods are also contemplated for using magnetic patterns to sort collections of microdevices by magnetic complementarity. Preferred methods use a capture and release process to sort microdevices (microdevices), and unlike conventional sorters, do not require high particle flow rates. Also contemplated are microdevice libraries in which microdevices have mutually distinct magnetic codes, and a region with a mutually distinct polymeric or other chemical moiety.
摘要:
The present invention provides a novel essential regulatory subunit of the IκB kinase (IKK) complex, IKK-γ. The isolated IKK-γ subunit of the invention has substantially the same amino acid sequence as SEQ ID NO: 2 shown in FIG. 2.
摘要翻译:本发明提供IkappaB激酶(IKK)复合物IKK-γ的新型必需调节亚基。 本发明的分离的IKK-γ亚基具有与图1所示的SEQ ID NO:2基本相同的氨基酸序列。 2。