摘要:
The present invention recognizes that the determination of an ion transport function or property using direct detection methods, such as patch-clamps, whole cell recording or single channel recording, are preferable to methods that utilize indirect detection methods, such as FRET based detection system. The present invention provides biochips and methods of use that allow for the direct analysis of ion transport functions or properties using microfabricated structures that can allow for automated detection of one or more ion transport functions or properties. These biochips and methods of use thereof are particularly appropriate for automating the detection of ion transport functions or properties, particularly for screening purposes.
摘要:
The present invention recognizes that the determination of an ion transport function or property using direct detection methods, such as patch-clamps, whole cell recording or single channel recording, are preferable to methods that utilize indirect detection methods, such as FRET based detection system. The present invention provides biochips and methods of use that allow for the direct analysis of ion transport functions or properties using microfabricated structures that can allow for automated detection of one or more ion transport functions or properties. These biochips and methods of use thereof are particularly appropriate for automating the detection of ion transport functions or properties, particularly for screening purposes.
摘要:
The present invention recognizes that the determination of ion transport function or properties using direct detection methods, such as whole cell recording or single channel recording, are preferable to methods that utilize indirect detection methods, such as FRET based detection system. The present invention provides biochips and other fluidic components and methods of use that allow for the direct analysis of ion transport function or properties using microfabricated structures that can allow for automated detection of ion transport function or properties. These biochips and fluidic components and methods of use thereof are particularly appropriate for automating the detection of ion transport function or properties, particularly for screening purposes.
摘要:
The present invention recognizes that the determination of ion transport function or properties using direct detection methods, such as whole cell recording or single channel recording, are preferable to methods that utilize indirect detection methods, such as FRET based detection system. The present invention provides biochips and other fluidic components and methods of use that allow for the direct analysis of ion transport function or properties using microfabricated structures that can allow for automated detection of ion transport function or properties. These biochips and fluidic components and methods of use thereof are particularly appropriate for automating the detection of ion transport function or properties, particularly for screening purposes.
摘要:
This invention relates generally to the field of moiety or molecule isolation, detection and manipulation and library synthesis. In particular, the invention provides a microdevice, which microdevice comprises: a) a magnetizable substance; and b) a photorecognizable coding pattern, wherein said microdevice has a preferential axis of magnetization. Systems and methods for isolating, detecting and manipulating moieties and synthesizing libraries using the microdevices are also provided.
摘要:
The present invention recognizes that diagnosis and prognosis of many conditions can depend on the enrichment of rare cells, especially tumor cells, from a complex fluid sample such as a blood sample. In particular, the present invention is directed to methods and compositions for detecting a non-hematopoietic cell, e.g., a non-hematopoietic tumor cell, in a blood sample via, inter alia, removing red blood cells (RBCs) from a blood sample using a non-centrifugation procedure, removing white blood cells (WBCs) from said blood sample to enrich a non-hematopoietic cell, if any, from said blood sample; and assessing the presence, absence and/or amount of said enriched non-hematopoietic cell.
摘要:
The present invention includes methods of enriching rare cells, such as cancer cells, from biological samples, such as blood samples. The methods include performing at least one debulking step on a blood sample and selectively removing at least one type undesirable component from the blood sample to obtain a blood sample that is enriched in a rare cell of interest. In some embodiments magnetic beads coupled to specific binding members are used to selectively removed components.
摘要:
The present invention recognizes that diagnosis and prognosis of many conditions can depend on the enrichment of rare cells, especially tumor cells, from a complex fluid sample such as a blood sample. In particular, the present invention is directed to methods and compositions for detecting a non-hematopoietic cell, e.g., a non-hematopoietic tumor cell, in a blood sample via, inter alia, removing red blood cells (RBCs) from a blood sample using a non-centrifugation procedure, removing white blood cells (WBCs) from said blood sample to enrich a non-hematopoietic cell, if any, from said blood sample; and assessing the presence, absence and/or amount of said enriched non-hematopoietic cell.
摘要:
The present invention includes methods of enriching rare cells, such as cancer cells, from biological samples, such as blood samples. The methods include performing at least one debulking step on a blood sample and selectively removing at least one type undesirable component from the blood sample to obtain a blood sample that is enriched in a rare cell of interest. In some embodiments magnetic beads coupled to specific binding members are used to selectively removed components.
摘要:
This invention relates generally to the field of moiety or molecule isolation, detection and manipulation and library synthesis. In particular, the invention provides a microdevice, which microdevice comprises: a) a magnetizable substance; and b) a photorecognizable coding pattern, wherein said microdevice has a preferential axis of magnetization. Systems and methods for isolating, detecting and manipulating moieties and synthesizing libraries using the microdevices are also provided.