摘要:
Light emitting diodes (LEDs) and LED bars and LED arrays formed of semiconductive material, such as III-V, and particularly AlGaAs/GaAs material, are formed in very thin structures using organometallic vapor deposition (OMCVD). Semiconductor p-n junctions are formed as deposited using carbon as the p-type impurity dopant. Various lift-off methods are described which permit back side processing when the growth substrate is removed and also enable device registration for LED bars and arrays to be maintained.
摘要:
Light emitting diodes (LEDs) and LED bars and LED arrays formed of semiconductive material, such as III-V, and particularly AlGaAs/CaAs material, are formed in very thin structures using organometallic vapor deposition (OMCVD). Semiconductor p-n junctions are formed as deposited using carbon as the p-type impurity dopant. Various lift-off methods are described which permit back side processing when the growth substrate is removed and also enable device registration for LED bars and arrays to be maintained.
摘要:
Light emitting diodes (LEDs) and LED bars and LED arrays formed of semiconductive material, such as III-V, and particularly AlGaAs/GaAs material, are formed in very thin structures using organometallic vapor deposition (OMCVD). Semiconductor p-n junctions are formed as deposited using carbon as the p-type impurity dopant. Various lift-off methods are described which permit back side processing when the growth substrate is removed and also enable device registration for LED bars and arrays to be maintained.
摘要:
A display panel is formed using a single crystal thin-film material that may be transferred to substrates for display fabrication. Pixel arrays form light valves or switches that can be fabricated with control electronics in the thin-film material prior to transfer. The resulting circuit panel is then incorporated into a display panel with a light emitting or liquid crystal material to provide the desired display.
摘要:
A display panel is formed using a single crystal thin-film material that may be transferred to substrates for display fabrication. Pixel arrays form light valves or switches that can be fabricated with control electronics in the thin-film material prior to transfer. The resulting circuit panel is then incorporated into a display panel with a light emitting or liquid crystal material to provide the desired display.
摘要:
The present invention relates to methods of fabricating pixel electrodes for active matrix displays including the formation of arrays of transistor circuits in thin film silicon on an insulating substrate and transfer of this active matrix circuit onto an optically transmissive substrate. An array of color filter elements can be formed prior to transfer of the active matrix circuit that are aligned between a light source for the display and the array of pixel electrodes to provide a color display.
摘要:
The present invention relates to methods of fabricating pixel electrodes (44) for active matrix displays including the formation of arrays of transistor circuits in thin film silicon (10) on an insulating substrate and transfer of this active matrix circuit onto an optically transmissive substrate (24). An array of color filter elements can be formed prior to transfer of the active matrix circuit that are aligned between a light source for the display and the array of pixel electrodes to provide a color display.
摘要:
A display panel is formed using a single crystal thin-film transistors that are transferred to substrates for display fabrication. Pixel arrays form light valves or switches that can be fabricated with control electronics in the thin-film material prior to transfer. The resulting circuit panel is then incorporated into a projection display system with a light emitting or liquid crystal material to provide the desired light valve.
摘要:
Circuit modules including complex multi-function circuitry on common module substrates using circuit tiles of silicon thin-films which are transferred, interconnected and packaged. The modules include integrated transfer/interconnects with extremely high density and complexity with large-area active-matrix liquid crystal displays and on-board drivers and logic in glass-based modules.
摘要:
A display panel is formed using a single crystal thin-film transistors that are transferred to substrates for display fabrication. Pixel arrays form light valves or switches that can be fabricated with control electronics in the thin-film material prior to transfer. The resulting circuit panel is then incorporated into a projection display system with a light emitting or liquid crystal material to provide the desired light valve.