摘要:
A semiconductor diffusion type force sensing apparatus includes a plate-like semiconductor substrate formed by a single crystal material, and a plurality of sensing elements each constituted by a substantially rectangular impurity-diffused region formed in the semiconductor substrate. The sensing elements have an electric resistance variable in accordance with a deformation thereof due to an external force exerted on the semiconductor substrate. The sensing elements are arranged in a direction in which a longitudinal direction of each of the sensing elements coincides with a crystal orientation of the semiconductor substrate having an external value of a longitudinal piezoresistance coefficient of the impurity-diffused region.
摘要:
With a stopper layer 19 as an etching stopper, a second groove 14a and a contact hole 13a are formed. Copper is buried inside the second groove 14a and the contact hole 13a, thereby forming a plug layer 22 and an overlying wiring layer 21 connected to an underlying wiring layer 17 via the plug layer 22. The stopper layer 19 is comprised of Si, C and N as essential components. First and second cap layers 18 and 23 are also comprised of Si, C and N as essential components.
摘要:
A semiconductor device using, e.g., a fluorine containing carbon film, as an interlayer dielectric film is produced by a dual damascene method which is a simple technique. After an dielectric film, e.g., an SiO2 film 3, is deposited on a substrate 2, the SiO2 film 3 is etched to form a via hole 31 therein, and then, a top dielectric film, e.g., a CF film 4, is deposited on the top face of the SiO2 film 3. If the CF film is deposited by activating a thin-film deposition material having a bad embedded material, e.g., C6F6 gas, as a plasma, the CF film 4 can be deposited on the top face of the SiO2 film 3 while inhibiting the CF film from being embedded into the via hole 31. Subsequently, by etching the CF film 4 to form a groove 41 therein, it is possible to easily produce a dual damascene shape wherein the groove 41 is integrated with the via hole 31.
摘要:
It is an object of the present invention to provide a process for a fluorine containing carbon film (a CF film), which can put an interlayer insulator film of a fluorine containing carbon film into practice. A conductive film, e.g., a TiN film 41, is formed on a CF film 4. After a pattern of a resist film 42 is formed thereon, the TiN film 41 is etched with, e.g., BCl3 gas. Thereafter, when the surface of the wafer is irradiated with O2 plasma, the CF film is chemically etched, and the resist film 42 is also etched. However, since the TiN film 41 functions as a mask, a predetermined hole can be formed. Although an interconnection layer of aluminum or the like is formed on the surface of the CF film 4, the TiN film 41 functions as an adhesion layer for adhering the interconnection layer to the CF film 4 and serves as a part of the interconnection layer. As the mask, an insulator film of SiO2 or the like may be substituted for the film.
摘要:
In order to decompose TiCl.sub.4 to Ti and Cl completely, extremely high energy of more than 400 kcal mol.sup.-1 is required.In the method according to the present invention, use of unequilibrium plasma under reduced pressure is noticed, and it is especially noticed that in the plasma generated by resonance phenomenon, there are high energy electrons, which collide and enhance decomposition and reduction. Therefore, itis possible to form a Ti film without such high substrate temperature as 2000.degree. C., and more, to form a Tifilm with good step coverage even in a fine contact hole.
摘要:
A method for forming a thin film, comprising the steps of:generating a plasma in a plasma generation chamber by action of an electric field generated by a microwave and a magnetic field generated by an exciting coil arranged around; andintroducing the generated plasma into a reaction chamber, resulting in forming a thin film on a sample placed on a sample stage, wherein it is a chracteristic to form a metal nitride film on said sample, by introducing Ar, H.sub.2, and N.sub.2 gas into said plasma generation chamber, while introducing a metallic gas into said reaction chamber.By the method according to the present invention, it is possible to form a thin film having good Step Coverage on the contact hole, in addition, on the side wall of the contact hole a thinner film can be formed than that on the bottom. As a result, in the next step, filling in with interconnection materials can be surely performed, resulting in improving reliability of LSI devices.
摘要:
Microwave is introduced into a plasma chamber of a plasma processing apparatus and magnetic field is applied thereto to allow plasma generation gas to be placed in plasma state by the electron cyclotron resonance. This plasma is introduced into a film forming chamber of the plasma processing apparatus to allow film forming gas including compound gas of carbon and fluorine or compound gas of carbon, fluorine and hydrogen, and hydro carbon gas to be placed in plasma state. In addition, an insulating film consisting of fluorine added carbon film is formed by the film forming gas placed in plasma state.
摘要:
A semiconductor device has a dielectric film made of a fluorine-added carbon film formed on a substrate, a metallic layer formed on the fluorine-added carbon film and an adhesive layer formed between the dielectric film and the metallic layer. The adhesive layer is made of a compound layer having carbon and the metal (or metal the same as the metal included in the metallic layer), to protect the metallic layer from being peeled-off from the fluorine-added carbon film.
摘要:
An objective of this invention is to provide a plasma processing method that is capable of reducing particle contamination during plasma processing performed upon a semiconductor wafer. If the use of electron cyclotron resonance to generate a plasma and form a thin film of SiOF or the like is used by way of example, a sheath zone of a few mm thick is formed between the wafer and the plasma, and particles are trapped within a boundary zone between the sheath zone and the plasma. At this point, a microwave power is not dropped suddenly to zero after the film-formation processing, but is reduced to a lower level of, for example, 1 kW and is held for 10 seconds. This reduces the plasma density and thickens the sheath zone, so that particles are held away from the wafer surface. When the microwave power is subsequently cut, the particles move freely around, but only a small proportion thereof adhere to the wafer.
摘要:
Microwave is introduced into a plasma chamber of a plasma processing apparatus and magnetic field is applied thereto to allow plasma generation gas to be placed in plasma state by the electron cyclotron resonance. This plasma is introduced into a film forming chamber of the plasma processing apparatus to allow film forming gas including compound gas of carbon and fluorine or compound gas of carbon, fluorine and hydrogen, and hydro carbon gas to be placed in plasma state. In addition, an insulating film consisting of fluorine added carbon film is formed by the film forming gas placed in plasma state.