摘要:
For coating workpieces having basic bodies (3), with a ceramic, electrically non-conducting material, during the coating process a pulsating dc voltage is applied to the basic bodies (3) or their holders (36). Preferably the pulse height is changed during vaporization used for the coating process, from high negative values to smaller negative values. A further layer can be applied onto the workpieces coated in this way whereby these work-pieces, due to their excellent corrosion resistance, are suited as pieces of jewelry which can be exposed in particular to ocean water and body perspiration, as rolling bodies in which the use of oil or grease as corrosion protection can be dispensed with, and as separating and cutting tools for organic materials.
摘要:
A coated tool or instrument has a wear-resistant hard coating (7) which is preferably titanium nitride for working organic material which is disposed on a separating layer (9) applied on a basic body (3). The separating layer (9) comprises a ceramic electrically non-conducting material. Such a material is preferably an oxide, nitride or oxynitride of silicon. The separating layer (9) protects the basic body (3) of the tool or instrument of e.g. a non-corrosion resistant steel. During the coating of the basic body (3) with the ceramic material, a pulsating dc voltage is applied to the basic body (3) or its holders. The pulse height is changed during the vapor deposition from high negative values to low negative values.
摘要:
A method for manufacturing a cutting tool includes the steps of providing a body of cermet or cemented carbide, having a cutting edge with an edge radius Re smaller than 40 μm, a flank a rake face, applying by PVD a single or a multilayer coating to at least a part of the surface of the body, comprising at least a part of the cutting edge and applying by PVD said single or multilayer coating, comprising PVD coating with at least one oxidic layer.
摘要:
The invention relates to a method for surface treatment of work pieces in a vacuum treatment system having a first electrode embodied as a target, which is part of an arc vaporization source; by means of the first electrode, an arc is operated with an arc current and vaporizes material from the target that is deposited at least partially and intermittently onto the work pieces and having a second electrode that is embodied as a work piece holder and, together with the work pieces, constitutes a bias electrode; by means of a voltage supply, a bias voltage is applied to the bias electrode, with the bias voltage applied so that it is matched to the arc current such that essentially, no net material buildup on the surface occurs.
摘要:
A PVD layer system for the coating of workpieces encompasses at least one mixed-crystal layer of a multi-oxide having the following composition: (Me11-xMe2x)2O3, where Me1 and Me2 each represent at least one of the elements Al, Cr, Fe, Li, Mg, Mn, Nb, Ti, Sb or V. The elements of Me1 and Me2 differ from one another. The crystal lattice of the mixed-crystal layer in the PVD layer system has a corundum structure which in an x-ray diffractometrically analyzed spectrum of the mixed-crystal layer is characterized by at least three of the lines associated with the corundum structure. Also disclosed is a vacuum coating method for producing a mixed-crystal layer of a multi-oxide, as well as correspondingly coated tools and components.
摘要:
The invention relates to a method for producing oxidic layers by means of PVD (physical vapor deposition), in particular by means of cathodic arc vaporization, wherein a powder-metallurgical target is vaporized and the powder-metallic target is formed of at least two metallic or semi-metallic components, the composition of the metallic or semi-metallic components resp. of the target being chosen in such a manner that during heating in the transition from the room temperature into the liquid phase no phase boundary of purely solid phases, based on the phase diagram of a molten mixture of the at least two metallic or semi-metallic components, is crossed.
摘要:
A PVD layer system for the coating of workpieces encompasses at least one mixed-crystal layer of a multi-oxide having the following composition: (Me11-xMe2x)2O3, where Me1 and Me2 each represent at least one of the elements Al, Cr, Fe, Li, Mg, Mn, Nb, Ti, Sb or V. The elements of Me1 and Me2 differ from one another. The crystal lattice of the mixed-crystal layer in the PVD layer system has a corundum structure which in an x-ray diffractometrically analyzed spectrum of the mixed-crystal layer is characterized by at least three of the lines associated with the corundum structure. Also disclosed is a vacuum coating method for producing a mixed-crystal layer of a multi-oxide, as well as correspondingly coated tools and components.
摘要:
The invention provides a single or a multilayer PVD coated sharp edged cutting tool, which can at the same time exhibit satisfactory wear and thermochemical resistance as well as resistance to edge chipping. The cutting tool comprises a sintered body made of a cemented carbide, a CBN, a cermet or a ceramic material having a cutting edge with an edge radius Re, a flank and a rake face and a multilayer coating consisting of a PVD coating comprising at least one oxidic PVD layer covering at least parts of the surface of the sintered body. In one embodiment the edge radius Re is smaller than 40 μm, preferably smaller than or equal to 30 μm. The covered parts of the surface preferably comprise at least some parts of the sharp edge of the sintered body.
摘要:
The invention relates to a vacuum plasma generator for providing a plasma discharge (10) for treating work pieces (5) by way of a pulsed plasma process in a vacuum chamber (2). Said vacuum plasma generator comprises a generator output (9, 9′) having an AC mains supply (6a), an AC/DC mains rectifier system (6) for rectifying the AC mains voltage to a DC voltage, a filter capacitor (6b), a first stage as clocked DC/DC voltage converter (7) with means for adjusting the DC output voltage which produces an intermediate circuit voltage (Uz), comprising a controlled power switch (7a) which feeds the primary winding of a transformer (14) and the secondary winding of which is connected to a rectifier (15) and a downstream intermediate capacitor (12) and configures a floating transformer secondary circuit (23). Said secondary circuit is connected to a downstream second stage which is a pulse output stage (8) and is connected to the generator output (9, 9′). The DC/DC voltage converter (7) has at least two floating transformer secondary circuits (23) and comprises a switch-over device (20) with a switch controller (22) for optionally switching the floating transformer secondary circuits (23) in parallel or in series.
摘要:
Substrates are charged with a material by introducing the substrates into an evacuated vacuum container and exposing the surface of the substrates to a reactive gas which is adsorbed on the surface. The exposure is then terminated and the reactive gas adsorbed on the surface is allowed to react. The surface with the adsorbed reactive gas is exposed to a low-energy plasma discharge with ion energy E10 on the surface of the substrate of 0
摘要翻译:通过将基板引入抽真空的真空容器中并将基板的表面暴露于吸附在表面上的反应性气体,从而将基板装入基材中。 然后曝光被终止,并且允许吸附在表面上的反应性气体发生反应。 具有吸附的反应性气体的表面暴露于基板表面上的离子能量E 10 N的低能量等离子体放电,其中0 <10 <20eV 和e e E e E e e e e e e的电子能量E e。 吸附的反应气体至少与等离子体产生的离子和电子的配合起反应,并且其中将填充在衬底表面上的所得材料的密度控制为具有从分离的原子到形成连续单层的预定密度 。