摘要:
A system has been constructed that recapitulate the features of a capillary bed through normal human tissue. The system facilitates perfusion of three-dimensional (3D) cell monocultures and heterotypic cell co-cultures at the length scale of the capillary bed. A major feature is that the system can be utilized within a “multiwell plate” format amenable to high-throughput assays compatible with the type of robotics commonly used in pharmaceutical development. The system provides a means to conduct assays for toxicology and metabolism and as a model for human diseases such as hepatic diseases, including hepatitis, exposure-related pathologies, and cancer. Cancer applications include primary liver cancer as well as metastases. The system can also be used as a means of testing gene therapy approaches for treating disease and inborn genetic defects.
摘要:
Systems including (1) a micromatrix and perfusion assembly suitable for seeding and attachment of cells within the matrix and for morphogenesis of seeded cells into complex, hierarchical tissue or organ structures, wherein the matrix includes channels or vessels through which culture medium, oxygen, or other nutrient or body fluids can be perfused while controlling gradients of nutrients and exogenous metabolites throughout the perfusion path independently of perfusion rate, and (2) sensor means for detecting changes in either cells within the matrix or in materials exposed to the cells, have been developed. Methods for making the micromatrices include micromachining, micromolding, embossing, laser drilling, and electro deposition machining. Cells can be of one or more types, either differentiated or undifferentiated. In a preferred embodiment, the matrix is seeded with a mixture of cells including endothelial cells which will line the channels to form “blood vessels”, and at least one type of parenchymal cells, such as hepatocytes, pancreatic cells, or other organ cells. The system can be used to screen materials for an effect on the cells, for an effect of the cells on the materials (for example, in a manner equivalent to tissue metabolism of a drug), or to test a material on a biological that must first infect cells or tissues, such as viruses. The apparatus also can be used to provide a physiological environment for expansion of stem cells, or for enabling gene therapy in vitro.
摘要:
Polymeric materials are used to make a pliable, non-toxic, injectable porous template for vascular ingrowth. The pore size, usually between approximately 100 and 300 microns, allows vascular and connective tissue ingrowth throughout approximately 10 to 90% of the matrix following implantation, and the injection of cells uniformly throughout the implanted matrix without damage to the cells or patient. The introduced cells attach to the connective tissue within the matrix and are fed by the blood vessels. The preferred material for forming the matrix or support structure is a biocompatible synthetic polymer which degrades in a controlled manner by hydrolysis into harmless metabolites, for example, polyglycolic acid, polylactic acid, polyorthoester, polyanhydride, or copolymers thereof. The rate of tissue ingrowth increases as the porosity and/or the pore size of the implanted devices increases. The time required for the tissue to fill the device depends on the polymer crystallinity and is less for amorphous polymers versus semicrystalline polymers. The vascularity of the advancing tissue is consistent with time and independent of the biomaterial composition and morphology.
摘要:
Polymeric materials are used,to make a pliable, non-toxic, injectable porous template for vascular ingrowth. The pore size, usually between approximately 100 and 300 microns, allows vascular and connective tissue ingrowth throughout approximately 10 to 90% of the matrix following implantation, and the injection of cells uniformly throughout the implanted matrix without damage to the cells or patient. The introduced cells attach to the connective tissue within the matrix and are fed by the blood vessels. The preferred material for forming the matrix or support structure is a biocompatible synthetic polymer which degrades in a controlled manner by hydrolysis into harmless metabolites, for example, polyglycolic acid, polylactic acid, polyorthoester, polyanhydride, or copolymers thereof. The rate of tissue ingrowth increases as the porosity and/or the pore size of the implanted devices increases. The time required for the tissue to fill the device depends on the polymer crystallinity and is less for amorphous polymers versus semicrystalline polymers. The vascularity of the advancing tissue is consistent with time and independent of the biomaterial composition and morphology.
摘要:
Provided herein are ligand dimers, compositions thereof, as well as methods of their use. The ligand dimers provided can comprise at least one ligand to a Her receptor and can be used to force dimerization of specific receptor pairs. The forced dimerization of specific receptor pairs can be used to control (e.g., promote or inhibit) signaling, and, therefore, the ligand dimers provided can also be used in various forms of treatment in which such signaling control is beneficial to a subject. It follows that methods for controlling signaling are provided as are various methods of treatment.
摘要:
Polymeric materials are used to make a pliable, non-toxic, injectable porous template for vascular ingrowth. The pore size, usually between approximately 100 and 300 microns, allows vascular and connective tissue ingrowth throughout approximately 10 to 90% of the matrix following implantation, and the injection of cells uniformly throughout the implanted matrix without damage to the cells or patient. The introduced cells attach to the connective tissue within the matrix and are fed by the blood vessels. The preferred material for forming the matrix or support structure is a biocompatible synthetic polymer which degrades in a controlled manner by hydrolysis into harmless metabolites, for example, polyglycolic acid, polylactic acid, polyorthoester, polyanhydride, or copolymers thereof. The rate of tissue ingrowth increases as the porosity and/or the pore size of the implanted devices increases. The time required for the tissue to fill the device depends on the polymer crystallinity and is less for amorphous polymers versus semicrystalline polymers. The vascularity of the advancing tissue is consistent with time and independent of the biomaterial composition and morphology.
摘要:
The invention is directed to a composition comprising all or a portion of a beta-tricalcium phosphate (β-TCP) bound to all or a portion of a β-TCP binding peptide and methods of use thereof.
摘要:
The invention is directed to a composition comprising all or a portion of a beta-tricalcium phosphate (β-TCP) bound to all or a portion of a β-TCP binding peptide and methods of use thereof.
摘要:
The invention provides methods and compositions for reducing, preventing or reversing cardio toxicity side effects associated with certain therapeutic agents. The invention also provides methods and compositions for treating heart dysfunction including heart failure, and for reversing the effects of myocardial infarction. The various aspects of the invention involve the use of ligand dimers, such as neuregulin dimers, that selectively induce the dimerization of certain EGF receptors in cardiac tissue.
摘要:
The invention provides methods and compositions for reducing, preventing or reversing cardio toxicity side effects associated with certain therapeutic agents. The invention also provides methods and compositions for treating heart dysfunction including heart failure, and for reversing the effects of myocardial infarction. The various aspects of the invention involve the use of ligand dimers, such as neuregulin dimers, that selectively induce the dimerization of certain EGF receptors in cardiac tissue.