摘要:
A measurement-facilitating method of measuring the breakdown voltage of a semiconductor epitaxial wafer, and a semiconductor epitaxial wafer whose breakdown voltage is superior are realized. In a method of measuring the breakdown voltage of a semiconductor epitaxial wafer having to do with the present invention, the breakdown voltage between contacts 12, 12 is measured only through the Schottky contacts, without need for ohmic contacts. Inasmuch as the manufacturing process of forming ohmic contacts is accordingly omitted, the semiconductor epitaxial wafer 10 may be readily used in a breakdown-voltage measurement test. The measurement of the wafer 10 breakdown voltage thus may be readily carried out. Likewise, because the inter-contact breakdown voltage V2 of a wafer 10 can be measured prior to manufacturing a working device from it, unsuitable wafers 10 can be excluded before they are cycled through the working-device fabrication process. Reduction in losses can accordingly be counted upon, in contrast to conventional measuring methods, by which inter-contact breakdown voltage V2 is measured following fabrication of the working devices.
摘要:
A measurement-facilitating method of measuring the breakdown voltage of a semiconductor epitaxial wafer, and a semiconductor epitaxial wafer whose breakdown voltage is superior are realized. In a method of measuring the breakdown voltage of a semiconductor epitaxial wafer having to do with the present invention, the breakdown voltage between contacts 14 and 18 is measured only through the Schottky contacts, without need for ohmic contacts. Inasmuch as the manufacturing process of forming ohmic contacts is accordingly omitted, the semiconductor epitaxial wafer 10 may be readily used in a breakdown-voltage measurement test. The measurement of the wafer-10 breakdown voltage thus may be readily carried out. Likewise, because the inter-contact breakdown voltage V2 of a wafer 10 can be measured prior to manufacturing a working device from it, unsuitable wafers 10 can be excluded before they are cycled through the working-device fabrication process. Reduction in losses can accordingly be counted upon, in contrast to conventional measuring methods, by which inter-contact breakdown voltage V2 is measured following fabrication of the working devices.
摘要:
In order to provide light emitting devices which have simple constructions and thus can be fabricated easily, and can stably provide high light emission efficiencies for a long time period, a light emitting device includes an n-type nitride semiconductor layer at a first main surface side of a nitride semiconductor substrate, a p-type nitride semiconductor layer placed more distantly from the nitride semiconductor substrate than the n-type nitride semiconductor layer at the first main surface side and a light emitting layer placed between the n-type nitride semiconductor layer and the p-type nitride semiconductor layer at the first main surface side. The nitride semiconductor substrate has a resistivity of 0.5 Ω·cm or less and the p-type nitride semiconductor layer side is down-mounted so that light is emitted from the second main surface of the nitride semiconductor substrate at the opposite side from the first main surface.
摘要:
A light emitting device includes a nitride semiconductor substrate with a resistivity of 0.5 Ω·cm or less, an n-type nitride semiconductor layer and a p-type nitride semiconductor layer placed more distantly from the nitride semiconductor substrate than the n-type nitride semiconductor layer at a first main surface side of the nitride semiconductor substrate, and a light emitting layer placed between the n-type nitride semiconductor layer and the p-type nitride semiconductor layer, wherein one of the nitride semiconductor substrate and the p-type nitride semiconductor layer is mounted at the top side which emits light and the other is placed at the down side, and a single electrode is placed at the top side. Therefore, there is provided a light emitting device which has a simple configuration thereby making it easy to fabricate, can provide a high light emission efficiency for a long time period, and can be easily miniaturized.
摘要:
In order to provide light emitting devices which have simple constructions and thus can be fabricated easily, and can stably provide high light emission efficiencies for a long time period, a light emitting device includes an n-type nitride semiconductor layer at a first main surface side of a nitride semiconductor substrate, a p-type nitride semiconductor layer placed more distantly from the nitride semiconductor substrate than the n-type nitride semiconductor layer at the first main surface side and a light emitting layer placed between the n-type nitride semiconductor layer and the p-type nitride semiconductor layer at the first main surface side. The nitride semiconductor substrate has a resistivity of 0.5 Ω·cm or less and the p-type nitride semiconductor layer side is down-mounted so that light is emitted from the second main surface of the nitride semiconductor substrate at the opposite side from the first main surface.
摘要:
In order to provide light emitting devices which have simple constructions and thus can be fabricated easily, and can stably provide high light emission efficiencies for a long time period, a light emitting device includes an n-type nitride semiconductor layer at a first main surface side of a nitride semiconductor substrate, a p-type nitride semiconductor layer placed more distantly from the nitride semiconductor substrate than the n-type nitride semiconductor layer at the first main surface side and a light emitting layer placed between the n-type nitride semiconductor layer and the p-type nitride semiconductor layer at the first main surface side. The nitride semiconductor substrate has a resistivity of 0.5 Ω·cm or less and the p-type nitride semiconductor layer side is down-mounted so that light is emitted from the second main surface of the nitride semiconductor substrate at the opposite side from the first main surface.
摘要:
In order to provide light emitting devices which have simple constructions and thus can be fabricated easily, and can stably provide high light emission efficiencies for a long time period, a light emitting device includes an n-type nitride semiconductor layer at a first main surface side of a nitride semiconductor substrate, a p-type nitride semiconductor layer placed more distantly from the nitride semiconductor substrate than the n-type nitride semiconductor layer at the first main surface side and a light emitting layer placed between the n-type nitride semiconductor layer and the p-type nitride semiconductor layer at the first main surface side. The nitride semiconductor substrate has a resistivity of 0.5 Ω·cm or less and the p-type nitride semiconductor layer side is down-mounted so that light is emitted from the second main surface of the nitride semiconductor substrate at the opposite side from the first main surface.
摘要:
A light emitting device includes a nitride semiconductor substrate with a resistivity of 0.5 Ω·cm or less, an n-type nitride semiconductor layer and a p-type nitride semiconductor layer placed more distantly from the nitride semiconductor substrate than the n-type nitride semiconductor layer at a first main surface side of the nitride semiconductor substrate, and a light emitting layer placed between the n-type nitride semiconductor layer and the p-type nitride semiconductor layer, wherein one of the nitride semiconductor substrate and the p-type nitride semiconductor layer is mounted at the top side which emits light and the other is placed at the down side, and a single electrode is placed at the top side. Therefore, there is provided a light emitting device which has a simple configuration thereby making it easy to fabricate, can provide a high light emission efficiency for a long time period, and can be easily miniaturized.
摘要:
Backgate-characteristics determination method and device that make for curtailing the fabrication of semiconductor circuit elements having defective backgate-characteristics. Initially a first C-V curve 30 representing the relation between a voltage applied to the obverse face of a wafer 20 serving as a substrate for semiconductor circuit elements, and its capacitance, is found. Next, a second C-V curve 32 is found through applying a voltage to the reverse face of the wafer 20. The backgate characteristics for the semiconductor circuit elements are determined based on a voltage-shift amount 34 for the wafer 20, found from the first C-V curve 30 and the second C-V curve 32.
摘要:
In a vertical semiconductor device including a channel in an opening, a semiconductor device whose high-frequency characteristics can be improved and a method for producing the semiconductor device are provided. The semiconductor device includes n-type GaN-based drift layer 4/p-type GaN-based barrier layer 6/n-type GaN-based contact layer 7. An opening 28 extends from a top layer and reaches the n-type GaN-based drift layer. The semiconductor device includes a regrown layer 27 located so as to cover the opening, the regrown layer 27 including an electron drift layer 22 and an electron supply layer 26, a source electrode S, a drain electrode D, and a gate electrode G located on the regrown layer. Assuming that the source electrode serving as one electrode and the drain electrode serving as the other electrode constitute a capacitor, the semiconductor device includes a capacitance-decreasing structure that decreases the capacitance of the capacitor.