摘要:
An electrode for a power storage device with less deterioration due to charge and discharge and a power storage device using the electrode are provided. In the electrode for a power storage device and the power storage device, a region including a metal element which functions as a catalyst is selectively provided over a current collector, and then, an active material layer is formed. By selectively providing the region including the metal element, a whisker can be effectively generated in the active material layer over the current collector, and the whisker generation region can be controlled. Accordingly, the discharge capacity can be increased and the cycle characteristics can be improved.
摘要:
An object of the present invention is to provide a technique for manufacturing a dense crystalline semiconductor film without a cavity between crystal grains. A plasma region is formed between a first electrode and a second electrode by supplying high-frequency power of 60 MHz or less to the first electrode under a condition where a pressure of a reactive gas in a reaction chamber of a plasma CVD apparatus is set to 450 Pa to 13332 Pa, and a distance between the first electrode and the second electrode of the plasma CVD apparatus is set to 1 mm to 20 mm; crystalline deposition precursors are formed in a gas phase including the plasma region; a crystal nucleus of 5 nm to 15 nm is formed by depositing the deposition precursors; and a microcrystalline semiconductor film is formed by growing a crystal from the crystal nucleus.
摘要:
A technique for manufacturing a microcrystalline semiconductor layer with high mass productivity is provided. In a reaction chamber of a plasma CVD apparatus, an upper electrode and a lower electrode are provided in almost parallel to each other. A hollow portion is formed in the upper electrode, and the upper electrode includes a shower plate having a plurality of holes formed on a surface of the upper electrode which faces the lower electrode. A substrate is provided over the lower electrode. A gas containing a deposition gas and hydrogen is supplied to the reaction chamber from the shower plate through the hollow portion of the upper electrode, and a rare gas is supplied to the reaction chamber from a portion different from the upper electrode. Accordingly, high-frequency power is supplied to the upper electrode to generate plasma, so that a microcrystalline semiconductor layer is formed over the substrate.
摘要:
An object is to provide a thin film transistor with small off current, large on current, and high field-effect mobility. A silicon nitride layer and a silicon oxide layer which is formed by oxidizing the silicon nitride layer are stacked as a gate insulating layer, and crystals grow from an interface of the silicon oxide layer of the gate insulating layer to form a microcrystalline semiconductor layer; thus, an inverted staggered thin film transistor is manufactured. Since crystals grow from the gate insulating layer, the thin film transistor can have a high crystallinity, large on current, and high field-effect mobility. In addition, a buffer layer is provided to reduce off current.
摘要:
An object of the present invention is to provide a technique for manufacturing a dense crystalline semiconductor film without a cavity between crystal grains. A plasma region is formed between a first electrode and a second electrode by supplying high-frequency power of 60 MHz or less to the first electrode under a condition where a pressure of a reactive gas in a reaction chamber of a plasma CVD apparatus is set to 450 Pa to 13332 Pa, and a distance between the first electrode and the second electrode of the plasma CVD apparatus is set to 1 mm to 20 mm; crystalline deposition precursors are formed in a gas phase including the plasma region; a crystal nucleus of 5 nm to 15 nm is formed by depositing the deposition precursors; and a microcrystalline semiconductor film is formed by growing a crystal from the crystal nucleus.
摘要:
An object of one embodiment of the present invention is to provide a technique for manufacturing a dense crystalline semiconductor film (e.g., a microcrystalline semiconductor film) without a cavity between crystal grains. A plasma region is formed between a first electrode and a second electrode by supplying high-frequency power of 60 MHz or less to the first electrode under a condition where a pressure of a reactive gas in a reaction chamber of a plasma CVD apparatus is set to 450 Pa to 13332 Pa, and a distance between the first electrode and the second electrode of the plasma CVD apparatus is set to 1 mm to 20 mm; crystalline deposition precursors are formed in a gas phase including the plasma region; a crystal nucleus of 5 nm to 15 nm is formed by depositing the deposition precursors; and a microcrystalline semiconductor film is formed by growing a crystal from the crystal nucleus.
摘要:
A technique for manufacturing a microcrystalline semiconductor layer with high mass productivity is provided. In a reaction chamber of a plasma CVD apparatus, an upper electrode and a lower electrode are provided in almost parallel to each other. A hollow portion is formed in the upper electrode, and the upper electrode includes a shower plate having a plurality of holes formed on a surface of the upper electrode which faces the lower electrode. A substrate is provided over the lower electrode. A gas containing a deposition gas and hydrogen is supplied to the reaction chamber from the shower plate through the hollow portion of the upper electrode, and a rare gas is supplied to the reaction chamber from a portion different from the upper electrode. Accordingly, high-frequency power is supplied to the upper electrode to generate plasma, so that a microcrystalline semiconductor layer is formed over the substrate.
摘要:
Provided is a structure to obtain a reliable electrical contact through a narrow contact hole formed in an insulating layer, which is required in the miniaturization of a semiconductor device. An exemplified structure includes a thin film transistor comprising: a lower electrode over and in contact with a semiconductor layer, the lower electrode comprising a metal or a metal compound; an insulating layer over the lower electrode, the insulating layer having a contact hole reaching the lower electrode; a conductive silicon whisker grown from a surface of the lower electrode; and an upper electrode over the insulating layer and in contact with the conductive silicon whisker. The ability of the conductive silicon whisker grown from the lower electrode to ohmically contact with the lower and upper electrodes leads to a reliable electrical contact between the thin film transistor and a wiring.
摘要:
A novel photoelectric conversion device in which energy of light can be effectively utilized and performance can be improved is provided. A photoelectric conversion device includes a photoelectric conversion element and an energy conversion layer provided on a light-receiving side of a photoelectric conversion layer included in the photoelectric conversion element. The energy conversion layer includes a plurality of first layers and a plurality of second layers. The first layer and the second layer are alternately stacked. The thickness of the first layer is greater than or equal to 0.5 nm and less than or equal to 10 nm, and the thickness of the second layer is greater than or equal to 0.5 nm and less than or equal to 10 nm. The second layer can be formed using a material having a larger energy band gap than that of a material used for the first layer.
摘要:
Provided are a semiconductor film including silicon microstructures formed at high density, and a manufacturing method thereof. Further, provided are a semiconductor film including silicon microstructures whose density is controlled, and a manufacturing method thereof Furthermore, a power storage device with improved charge-discharge capacity is provided. A manufacturing method in which a semiconductor film with a silicon layer including silicon structures is formed over a substrate with a metal surface is used. The thickness of a silicide layer formed by reaction between the metal and the silicon is controlled, so that the grain sizes of silicide grains formed at an interface between the silicide layer and the silicon layer are controlled and the shapes of the silicon structures are controlled. Such a semiconductor film can be applied to an electrode of a power storage device.