摘要:
A semiconductor component (1) has a semiconductor chip (5) and a semiconductor component carrier (3) with external connection strips (12, 13, 15). The semiconductor chip (5) has a first electrode (6) and a control electrode (7) on its top side (8) and a second electrode (9) on its rear side (10). The semiconductor chip (5) is fixed by its top side (8) in flip-chip arrangement (11) on a first and a second external connection strip (12, 13) for the first electrode (6) and the control electrode (7). The second electrode (9) is electrically connected to at least one third external connection strip (15) via a bonding tape (14).
摘要:
A power semiconductor component stack, using lead technology with surface-mountable external contacts, includes at least two MOSFET power semiconductor components each having a top side and an underside. The underside includes: a drain external contact area, a source external contact area and a gate external contact area. The top side includes at least one source external contact area and a gate external contact area. The gate external contact areas on the top side and the underside are electrically connected to one another. The power semiconductor component stack is a series circuit or a parallel circuit of MOSFET power semiconductor components arranged one above another in a plastic housing composition.
摘要:
A semiconductor component (1) has a semiconductor chip (5) and a semiconductor component carrier (3) with external connection strips (12, 13, 15). The semiconductor chip (5) has a first electrode (6) and a control electrode (7) on its top side (8) and a second electrode (9) on its rear side (10). The semiconductor chip (5) is fixed by its top side (8) in flip-chip arrangement (11) on a first and a second external connection strip (12, 13) for the first electrode (6) and the control electrode (7). The second electrode (9) is electrically connected to at least one third external connection strip (15) via a bonding tape (14).
摘要:
A power semiconductor component stack, using lead technology with surface-mountable external contacts, includes at least two MOSFET power semiconductor components each having a top side and an underside. The underside includes: a drain external contact area, a source external contact area and a gate external contact area. The top side includes at least one source external contact area and a gate external contact area. The gate external contact areas on the top side and the underside are electrically connected to one another. The power semiconductor component stack is a series circuit or a parallel circuit of MOSFET power semiconductor components arranged one above another in a plastic housing composition.
摘要:
A semiconductor device having surface-mountable external contact areas and a method for producing the same is disclosed. The surface-mountable external contacts are arranged as flat external contacts on the underside of the semiconductor device. In one embodiment, the semiconductor chip of the semiconductor device has a source contact area and a gate contact area on its top side and a drain contact area on its rear side. The source contact area is fixed on a cutout of a heat sink, which is connected to a source external contact, a top side of the heat sink partly forming the top side of the semiconductor device. The drain contact area is electrically connected to a drain external contact and the gate contact area is electrically connected via a connecting element to a gate external contact on the underside of the semiconductor device. Consequently, the semiconductor device as areas which dissipate the heat loss both on the underside and on the top side.
摘要:
A power semiconductor component includes at least one power semiconductor chip and surface-mountable external contacts. The power semiconductor chip includes large-area contact areas on its top side and its rear side, which cover essentially the entire top side and rear side, respectively. The top side also includes, alongside the large-area contact area, a small-area contact area; the areal extent of the small-area contact is at least ten times smaller than the areal extent of the large-area contact areas. The small-area contact area is connected to an individual external contact of the power semiconductor component via a bonding wire connection. The large-area contact area of the top side is connected to external contacts via a bonding tape.
摘要:
A semiconductor device having surface-mountable external contact areas and a method for producing the same is disclosed. The surface-mountable external contacts are arranged as flat external contacts on the underside of the semiconductor device. In one embodiment, the semiconductor chip of the semiconductor device has a source contact area and a gate contact area on its top side and a drain contact area on its rear side. The source contact area is fixed on a cutout of a heat sink, which is connected to a source external contact, a top side of the heat sink partly forming the top side of the semiconductor device. The drain contact area is electrically connected to a drain external contact and the gate contact area is electrically connected via a connecting element to a gate external contact on the underside of the semiconductor device. Consequently, the semiconductor device as areas which dissipate the heat loss both on the underside and on the top side.
摘要:
A power semiconductor component includes at least one power semiconductor chip and surface-mountable external contacts. The power semiconductor chip includes large-area contact areas on its top side and its rear side, which cover essentially the entire top side and rear side, respectively. The top side also includes, alongside the large-area contact area, a small-area contact area; the areal extent of the small-area contact is at least ten times smaller than the areal extent of the large-area contact areas. The small-area contact area is connected to an individual external contact of the power semiconductor component via a bonding wire connection. The large-area contact area of the top side is connected to external contacts via a bonding tape.
摘要:
A die structure includes a die and a metallization layer disposed over the front side of the die. The metallization layer includes copper. At least a part of the metallization layer has a rough surface profile. The part with the rough surface profile includes a wire bonding region, to which a wire bonding structure is to be bonded.
摘要:
A power semiconductor device is disclosed. In one embodiment, the power semiconductor device includes a plurality of device components that are contact-connected by bonding wires having different thicknesses. The surface of at least one bonding wire serves as a contact area for at least one further bonding wire, the bonding wire that serves as contact area being thicker than the bonding wire contact-connected thereon.