摘要:
High voltage transistors spanning multiple non-planar semiconductor bodies, such as fins or nanowires, are monolithically integrated with non-planar transistors utilizing an individual non-planar semiconductor body. The non-planar FETs may be utilized for low voltage CMOS logic circuitry within an IC, while high voltage transistors may be utilized for high voltage circuitry within the IC. A gate stack may be disposed over a high voltage channel region separating a pair of fins with each of the fins serving as part of a source/drain for the high voltage device. The high voltage channel region may be a planar length of substrate recessed relative to the fins. A high voltage gate stack may use an isolation dielectric that surrounds the fins as a thick gate dielectric. A high voltage transistor may include a pair of doped wells formed into the substrate that are separated by the high voltage gate stack with one or more fin encompassed within each well.
摘要:
High voltage three-dimensional devices having dielectric liners and methods of forming high voltage three-dimensional devices having dielectric liners are described. For example, a semiconductor structure includes a first fin active region and a second fin active region disposed above a substrate. A first gate structure is disposed above a top surface of, and along sidewalls of, the first fin active region. The first gate structure includes a first gate dielectric, a first gate electrode, and first spacers. The first gate dielectric is composed of a first dielectric layer disposed on the first fin active region and along sidewalls of the first spacers, and a second, different, dielectric layer disposed on the first dielectric layer and along sidewalls of the first spacers. The semiconductor structure also includes a second gate structure disposed above a top surface of, and along sidewalls of, the second fin active region. The second gate structure includes a second gate dielectric, a second gate electrode, and second spacers. The second gate dielectric is composed of the second dielectric layer disposed on the second fin active region and along sidewalls of the second spacers.
摘要:
Embodiments of semiconductor devices, integrated circuit devices and methods are disclosed. In some embodiments, a semiconductor device may include a first fin and a second fin disposed on a substrate. The first fin may have a portion including a first material disposed between a second material and the substrate, the second material disposed between a third material and the first material, and the third material disposed between a fourth material and the second material. The first and third materials may be formed from a first type of extrinsic semiconductor, and the second and fourth materials may be formed from a second, different type of extrinsic semiconductor. The second fin may be laterally separated from the first fin and materially contiguous with at least one of the first, second, third or fourth materials. Other embodiments may be disclosed and/or claimed.
摘要:
Embodiments of the present disclosure describe techniques and configurations for overcurrent fuses in integrated circuit (IC) devices. In one embodiment, a device layer of a die may include a first line structure with a recessed portion between opposite end portions and two second line structures positioned on opposite sides of the first line structure. An isolation material may be disposed in the gaps between the line structures and in a first recess defined by the recessed portion. The isolation material may have a recessed portion that defines a second recess in the first recess, and a fuse structure may be disposed in the second recess. Other embodiments may be described and/or claimed.
摘要:
Precision resistors for non-planar semiconductor device architectures are described. In a first example, a semiconductor structure includes first and second semiconductor fins disposed above a substrate. A resistor structure is disposed above the first semiconductor fin but not above the second semiconductor fin. A transistor structure is formed from the second semiconductor fin but not from the first semiconductor fin. In a second example, a semiconductor structure includes first and second semiconductor fins disposed above a substrate. An isolation region is disposed above the substrate, between the first and second semiconductor fins, and at a height less than the first and second semiconductor fins. A resistor structure is disposed above the isolation region but not above the first and second semiconductor fins. First and second transistor structures are formed from the first and second semiconductor fins, respectively.
摘要:
A semiconductor device and method to form a semiconductor device is described. The semiconductor includes a gate stack disposed on a substrate. Tip regions are disposed in the substrate on either side of the gate stack. Halo regions are disposed in the substrate adjacent the tip regions. A threshold voltage implant region is disposed in the substrate directly below the gate stack. The concentration of dopant impurity atoms of a particular conductivity type is approximately the same in both the threshold voltage implant region as in the halo regions. The method includes a dopant impurity implant technique having sufficient strength to penetrate a gate stack.
摘要:
Microelectronic structures embodying the present invention include a field effect transistor (FET) having highly conductive source/drain extensions. Formation of such highly conductive source/drain extensions includes forming a passivated recess which is back filled by epitaxial deposition of doped material to form the source/drain junctions. The recesses include a laterally extending region that underlies a portion of the gate structure. Such a lateral extension may underlie a sidewall spacer adjacent to the vertical sidewalls of the gate electrode, or may extend further into the channel portion of a FET such that the lateral recess underlies the gate electrode portion of the gate structure. In one embodiment the recess is back filled by an in-situ epitaxial deposition of a bilayer of oppositely doped material. In this way, a very abrupt junction is achieved that provides a relatively low resistance source/drain extension and further provides good off-state subthreshold leakage characteristics. Alternative embodiments can be implemented with a back filled recess of a single conductivity type.
摘要:
A method of selectively forming a spacer on a first class of transistors and devices formed by such methods. The method can include depositing a conformal first deposition layer on a substrate with different classes of transistors situated thereon, depositing a blocking layer to at least one class of transistors, dry etching the first deposition layer, removing the blocking layer, depositing a conformal second deposition layer on the substrate, dry etching the second deposition layer and wet etching the remaining first deposition layer. Devices may include transistors of a first class with larger spacers compared to spacers of transistors of a second class.
摘要:
Microelectronic structures embodying the present invention include a field effect transistor (FET) having highly conductive source/drain extensions. Formation of such highly conductive source/drain extensions includes forming a passivated recess which is back filled by epitaxial deposition of doped material to form the source/drain junctions. The recesses include a laterally extending region that underlies a portion of the gate structure. Such a lateral extension may underlie a sidewall spacer adjacent to the vertical sidewalls of the gate electrode, or may extend further into the channel portion of a FET such that the lateral recess underlies the gate electrode portion of the gate structure. In one embodiment the recess is back filled by an in-situ epitaxial deposition of a bilayer of oppositely doped material. In this way, a very abrupt junction is achieved that provides a relatively low resistance source/drain extension and further provides good off-state subthreshold leakage characteristics. Alternative embodiments can be implemented with a back filled recess of a single conductivity type.
摘要:
Microelectronic structures embodying the present invention include a field effect transistor (FET) having highly conductive source/drain extensions. Formation of such highly conductive source/drain extensions includes forming a passivated recess which is back filled by epitaxial deposition of doped material to form the source/drain junctions. The recesses include a laterally extending region that underlies a portion of the gate structure. Such a lateral extension may underlie a sidewall spacer (108) adjacent to the vertical sidewalls of the gate electrode (106), or may extend further into the channel portion of a FET such that the lateral recess underlies the gate electrode portion of the gate structure. In one embodiment the recess is back filled by an in-situ epitaxial deposition of a bilayer of oppositely doped material. In this way, a very abrupt junction is achieved that provides a relatively low resistance source/drain extension and further provides good off-state subthreshold leakage characteristics. Alternative embodiments can be implemented with a back filled recess of a single conductivity type.