Abstract:
To provide: a semiaromatic polyamide which has excellent moldability, heat resistance, chemical resistance and mechanical characteristics; and a molded article of this semiaromatic polyamide. A semiaromatic polyamide (I) of the present invention contains 35-50% by mole of a structural unit derived from terephthalic acid [A], 25-40% by mole of a structural unit derived from isophthalic acid [B], 15-35% by mole of a structural unit derived from an aliphatic dicarboxylic acid [C] (provided that the total of [A], [B] and [C] is 100% by mole), and a structural unit derived from an aliphatic diamine [D] having 4-12 carbon atoms. The molar ratio ([A]/[B]) is from 65/35 to 50/50, and the molar ratio ([C]/[B]) is from 30/70 to 50/50. The melting enthalpy ([increment]H) of the semiaromatic polyamide (I) as determined by differential scanning calorimetry (DSC) is 20-40 mJ/mg, and the intrinsic viscosity of the semiaromatic polyamide (I) is 0.7-1.6 dl/g.
Abstract:
The present invention addresses the problem of providing a lubricating oil composition having excellent heat resistance (suppression of discoloration in heating) and tackiness while maintaining excellent viscosity properties of a lubricating oil composition using a ricinolic acid polymer. The present invention provides a copolymer (B) containing structural units (a) derived from ricinolic acid, structural units (b) derived from an aliphatic dicarboxylic acid and structural units (c) derived from a diol having 2 to 10 carbon atoms in a specific ratio and having a specific intrinsic viscosity, and provides a lubricating oil composition containing a base oil and the copolymer (B) and having a mass ratio (mass of (A) /mass of (B)) of the base oil (A) to the copolymer (B) of 60/40 to 99.5/0.5.
Abstract:
The present invention relates to a polyamide-based thermoplastic elastomer composition [Y] in which a rubber composition [X] and a phenol resin-based crosslinking agent [IV] are dynamically crosslinked, the rubber composition [X] comprising a polyamide [I] including 30 to 100% by mole of a terephthalic acid structural unit and having a melting point of 220 to 290° C.; an ethylene-α-olefin-unconjugated polyene copolymer rubber [II] including structural units of ethylene, an α-olefin having 3 to 20 carbon atoms and an unconjugated polyene, respectively; and an olefin-based polymer [III] including 0.3 to 5.0% by mass of a functional group structural unit, (the total of [I] to [IV]: 100% by mass).
Abstract:
The present invention provides a semi-aromatic polyamide resin composition having exceptional impact resistance, fuel barrier properties, and injection moldability, as well as a molded article containing the same, through a semi-aromatic polyamide resin composition containing specific proportions of (A) a semi-aromatic polyamide comprising a dicarboxylic acid component comprising terephthalic acid and adipic acid and a diamine component having a linear aliphatic diamine having 4-10 carbon atoms, (B) a semi-aromatic polyamide comprising a dicarboxylic acid component having isophthalic acid and a diamine component having an aliphatic diamine having 4-15 carbon atoms, (C) an olefin polymer containing a specific amount of functional group structural units, and (D) a fibrous filler.
Abstract:
The present invention addresses the problem of providing a polyester resin composition for reflective materials which gives a reflective material having a high reflectance. The polyester resin composition for reflective materials comprises: a polyester resin (A) comprising an alicyclic dicarboxylic acid ingredient unit (a1) and an aliphatic diol ingredient unit (b1); and a white pigment (B). The amount of the alicyclic dicarboxylic acid ingredient unit (a1) is 50 mol % or more of the amount of all the dicarboxylic acid ingredient units (a) in the polyester resin (A), and the amount of the aliphatic diol ingredient unit (b1) is 50 mol % or more of the amount of all the diol ingredient units (b) in the polyester resin (A). The alicyclic dicarboxylic acid ingredient unit (a1) comprises the cis and trans forms of cis-trans isomers, the proportion of the cis form determined by NMR being 20 mol % or higher.
Abstract:
The problem of the invention is to provide a semi-aromatic polyamide resin composition having high rigidity, exceptional impact resistance, and exceptional zygosity with very little change in hardness associated with heating and cooling, as well as a molded article of this semi-aromatic polyamide resin composition. A semi-aromatic polyamide resin composition containing a semi-aromatic polyamide resin (A), acid-modified polyolefin resin (B), and fibrous filler (C), wherein the resin (A) contains a certain amount or more of terephthalic acid component units relative to the total number of moles of dicarboxylic acid component units, the semi-aromatic polyamide resin composition contains a certain amount or more of the resin (B), the glass transition temperature of the semi-aromatic polyamide resin composition is within a predetermined range, and the Vicat softening point of the resin (B) is within a predetermined range, is used as the semi-aromatic polyamide resin composition in order to solve this problem.
Abstract:
The present invention is directed to a polyester resin composition for providing a reflector having excellent mechanical strength and heat resistance, maintaining high reflectance even in a heated environment such as an LED manufacturing process or a reflow soldering process, and having small change in shrinkage rate. The polyester resin composition for a reflective material is a composition comprising 30 to 80% by mass of a polyester resin (A) with a melting point or a glass transition temperature of 250° C. or more, 10 to 35% by mass of a glass fiber (B) with a minor axis of 3 to 8 μm, 5 to 50% by mass of a white pigment (C), and 0.3 to 1.5% by mass of an olefin polymer (D) containing 0.2 to 1.8% of a functional group structural unit (all based on a total of (A), (B), (C) and (D) which is 100% by mass).
Abstract:
[Object] To provide an excellent foaming agent which does not have problems in handling and operation (example: risk of explosion or fire) and inhibition of cross-linking resulting from a foaming agent and problems, such as, mold pollution and environmental pollution, caused by a foaming agent residue, which has excellent uniform dispersibility in a subject of foaming, and which can be used as an alternative to the chemical decomposition type foaming agent.[Solution] A foaming agent formed from at least (A) a high molecular weight compound having a saturated water absorption of 10 to 1,000 g/g in ion-exchanged water (25° C.) and (B) water, wherein a storage modulus (G′) of the agent, determined on the basis of a viscoelasticity measurement at a temperature of 20° C., is 8.0×101 to 1.0×106 Pa at a frequency of 5 rad/s.
Abstract:
The purpose of the present invention is to provide a resin composition for obtaining a reflective panel that has high reflectivity, and that experiences minimal decline in reflectivity even when exposed to heat in the course of an LED package manufacturing process, a reflow soldering process during mounting of an LED package, or the like, or to heat and light from a light source in the service environment. This resin composition for a reflective panel includes 45-80 mass % of a thermoplastic resin (A) comprising at least one of a polyester resin (A1) and a polyamide resin (A2), that have a melting point (Tm) or glass transition temperature (Tg) of at least 250° C., as measured by a differential scanning calorimeter (DSC), 17-54.99% of a white pigment (B), and 0.01-3 mass % of at least one compound (C) represented by general formula (1) (wherein (A), (B), and (C) total 100 mass %).
Abstract:
The purpose of the present invention is to provide a polyester resin composition for a reflection plate having high reflectance and small decrease of reflectance under exposure to heat during production of an LED package or reflow soldering step for mounting, or exposure to heat and light from a light source. A polyester resin composition of the present invention contains: 30-80% by mass of (A) a polyester resin having a melting point or glass transition temperature of 250° C. or more as measured by DSC; 5-30% by mass of (B) a fibrous reinforcing material having an average fiber length (l) of 2-300 μm, an average fiber diameter (d) of 0.05-18 μm and an aspect ratio (l/d) of 2-20, said aspect ratio being a quotient of 1 by d; and 5-50% by mass of (C) a white pigment (with the total of (A), (B) and (C) being 100% by mass).