摘要:
A HEMT has a drain region adapted to be electrically connected to a high voltage of an electric source, a source region adapted to be electrically connected to a low voltage of the electric source. A first semiconductor region is disposed between the drain region and the source region. A MIS structure and a heterostructure are disposed at a surface of the first semiconductor region. The MIS structure includes a gate electrode that faces a portion of a surface of the first semiconductor region with a gate insulating membrane therebetween. The heterostructure includes a second semiconductor region which makes contact with a rest portion of the surface of the first semiconductor region and has a wider band-gap than the first semiconductor region. The drain region and the source region are capable of being electrically connected with a structure in which the MIS structure 40 and the heterostructure are arranged in series.
摘要:
A group III nitride based semiconductor device which has a trench or mesa structure and of which leakage of current and reduction of breakdown voltage are prevented. A GaN layer 2 was grown on a C-plane sapphire substrate 1, and a T-shaped USG film 3 was formed on the GaN layer 2 so that side surfaces of the USG film 3 were arranged parallel to A-plane and M-plane of the GaN layer 2. Thereafter, by using the USG film 3 as a mask, the GaN layer 2 was dry-etched. As is clear from FIGS. 2A and 2B, the M-plane is less roughened as compared with the A-plane. Subsequently, wet-etched was performed by use of an aqueous TMAH solution. As is clear from FIGS. 2C and 2D, roughness of the A-plane and the M-plane are removed, and, particularly, the M-plane assumes a mirror surface. Thus, through provision of M-plane side surfaces of a trench or an etching-formed mesa, leakage of current and reduction of breakdown voltage of a group III nitride based semiconductor device can be prevented.
摘要:
The invention provides a method for producing a group III nitride based semiconductor having a reduced number of crystal defects. A GaN layer 2 is epitaxially grown on a sapphire substrate 1 having C-plane as a main plane (FIG. 1A). Then, the layer is wet-etched by use of a 25% aqueous TMAH solution at 85° C. for one hour, to thereby form an etch pit 4 (FIG. 1B) Then, a GaN layer 5 is grown on the GaN layer 2 through the ELO method (FIG. 1C). The thus-formed GaN layer 5 has a screw dislocation density lower than that of the GaN layer 2.
摘要:
An SiC semiconductor device includes a substrate, a drift layer, a base region, a source region, a trench, a gate oxide film, a gate electrode, a source electrode and a drain electrode. The substrate has a Si-face as a main surface. The source region has the Si-face. The trench is provided from a surface of the source region to a portion deeper than the base region and extends longitudinally in one direction and has a Si-face bottom. The trench has an inverse tapered shape, which has a smaller width at an entrance portion than at a bottom, at least at a portion that is in contact with the base region.
摘要:
An SiC semiconductor device has a p type region including a low concentration region and a high concentration region filled in a trench formed in a cell region. A p type column is provided by the low concentration region, and a p+ type deep layer is provided by the high concentration region. Thus, since a SJ structure can be made by the p type column and the n type column provided by the n type drift layer, an on-state resistance can be reduced. As a drain potential can be blocked by the p+ type deep layer, at turnoff, an electric field applied to the gate insulation film can be alleviated and thus breakage of the gate insulation film can be restricted. Therefore, the SiC semiconductor device can realize the reduction of the on-state resistance and the restriction of breakage of the gate insulation film.
摘要:
A method of manufacturing a semiconductor device includes forming an ohmic electrode in a first area on one of main surfaces of a silicon carbide layer, siliciding the ohmic electrode, and forming a Schottky electrode in a second area on the one of the main surfaces of the silicon carbide layer with self alignment. The second area is exposed where the ohmic electrode is not formed.
摘要:
A normal person (i.e. a control) and liver diseases such as drug induced liver injury, an asymptomatic hepatitis B carrier, an asymptomatic hepatitis C carrier, chronic hepatitis B, chronic hepatitis C, liver cancer, a nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH), and simple steatosis (SS) are identified by measuring the concentrations of γ-Glu-X (X represents an amino acid or an amine) peptides or the levels of AST or ALT in blood and carrying out, for example, a multiple logistic regression based on the measured value.
摘要:
The silicon carbide semiconductor device includes a substrate, a drift layer, a base region, a source region, a trench, a gate insulating layer, a gate electrode, a source electrode, a drain electrode, and a deep layer. The deep layer is disposed under the base region and is located to a depth deeper than the trench. The deep layer is divided into a plurality of portions in a direction that crosses a longitudinal direction of the trench. The portions include a group of portions disposed at positions corresponding to the trench and arranged at equal intervals in the longitudinal direction of the trench. The group of portions surrounds corners of a bottom of the trench.
摘要:
A semiconductor device has a semiconductor substrate having a surface layer and a p-type semiconductor region, wherein the surface layer includes a contact region, a channel region and a drift region, the channel region is adjacent to and in contact with the contact region, the drift region is adjacent to and in contact with the channel region and includes n-type impurities at least in part, and the p-type semiconductor region is in contact with the drift region and at least a portion of a rear surface of the channel region, a main electrode disposed on the surface layer and electrically connected to the contact region, a gate electrode disposed on the surface layer and extending from above a portion of the contact region to above at least a portion of the drift region via above the channel region, and an insulating layer covering at least the portion of the contact region and not covering at least the portion of the drift region. The gate electrode and the contact region are insulated by the insulating layer, and the gate electrode and the drift region are in direct contact to form a Schottky junction.
摘要:
A semiconductor device disclosed in this specification includes a p+ contact region, an n+ source region, a p− base region, an n− drift region, a gate electrode, an insulator, a p+ electric field alleviating layer, and a p− positive hole extraction region. The electric field alleviating layer has same impurity concentration as the base region or higher, contacts a lower surface of the base region, and is formed in a same depth as the gate trench or in a position deeper than the gate trench. A positive hole extraction region extends to contact the electric field alleviating layer from a position to contact an upper surface of a semiconductor substrate or a first semiconductor region, and extracts a positive hole that is produced in the electric field alleviating layer at the avalanche breakdown to the upper surface of the semiconductor substrate.