摘要:
An object of the present invention is to provide a gallium nitride compound semiconductor multilayer structure useful for producing a gallium nitride compound semiconductor light-emitting device which operates at low voltage while maintaining satisfactory light emission output. The inventive gallium nitride compound semiconductor multilayer structure comprises a substrate, and an n-type layer, a light-emitting layer, and a p-type layer formed on the substrate, the light-emitting layer having a multiple quantum well structure in which a well layer and a barrier layer are alternately stacked repeatedly, said light-emitting layer being sandwiched by the n-type layer and the p-type layer, wherein the well layer comprises a thick portion and a thin portion, and the barrier layer contains a dopant.
摘要:
A group-III nitride compound semiconductor light-emitting device, a method of manufacturing the group-III nitride compound semiconductor light-emitting device, and a lamp. The method includes the steps of: forming an intermediate layer (12) made of a group-III nitride compound on a substrate (11) by activating and reacting gas including a group-V element with a metal material in plasma; and sequentially forming an n-type semiconductor layer (14), a light-emitting layer (15), and a p-type semiconductor layer (16) each made of a group-III nitride compound semiconductor on the intermediate layer (12). Nitrogen is used as the group-V element, and the thickness of the intermediate layer (12) is in the range of 20 to 80 nm.
摘要:
An apparatus for producing a group-III nitride semiconductor layer which forms a group-III nitride semiconductor layer on a substrate by a sputtering method, the apparatus including: a first plasma-generating region where a target containing a group-III element is disposed and the target is sputtered to generate material particles formed of a material contained in the target; and a second plasma generating region where the substrate is disposed and nitrogen-containing plasma is generated. The first plasma-generating region and the second plasma-generating region are provided inside a chamber, and the first plasma-generating region and the second plasma-generating region are separated by a shielding wall which has an opening part from which the material particles are supplied onto the substrate. Also disclosed are a method of producing a group-III nitride semiconductor layer, a method of producing a group-III nitride semiconductor light-emitting device, and a lamp thereof.
摘要:
A sputtering apparatus (1) includes: a chamber (10) having an inside maintained in a depressurized state to generate plasma discharge (20); a cathode (22) placed in the chamber (10) and holding a target (21); and a substrate holder (60) holding a substrate (110) so that one surface of the substrate (110) faces the surface of the target (21). The substrate (110) is arranged at an upper portion in the sputtering apparatus (1) with the surface of the substrate (110) facing downward. The target (21) is arranged at a lower portion in the sputtering apparatus (1) with the surface of the target (21) facing upward. The sputtering apparatus (1) includes a heater (65) for heating the substrate (110). The temperature of the substrate (110) is raised by absorbing electromagnetic waves radiated from the heater (65). A method of manufacturing a semiconductor light-emitting element using the sputtering apparatus is also disclosed.
摘要:
The present invention provides an apparatus for manufacturing a group-III nitride semiconductor layer having high crystallinity. An embodiment of the present invention provides an apparatus for manufacturing a group-III nitride semiconductor layer on a substrate 11 using a sputtering method. The apparatus includes: a chamber 41; a target 47 that is arranged in the chamber 41 and includes a group-III element; a first plasma generating means 51 that generates a first plasma for sputtering the target 47 to supply raw material particles to the substrate 11; a second plasma generating means 52 that generates a second plasma including a nitrogen element; and a control means that controls the first plasma generating means 51 and the second plasma generating means 52 to alternately generate the first plasma and the second plasma in the chamber 41.
摘要:
A Group III nitride compound semiconductor light emitting device is provided which has: an n-type semiconductor layer (12); an active layer (13) of a multiple quantum well structure laminated on the n-type semiconductor layer (12); a first p-type semiconductor layer (14) that is a layer of a superlattice structure in which an undoped film (14a) that has a composition AlxGa1-xN (x indicating composition ratio, being within a range 0
摘要翻译:提供了具有:n型半导体层(12)的III族氮化物化合物半导体发光器件; 层叠在所述n型半导体层(12)上的多量子阱结构的有源层(13)。 第一p型半导体层(14),其是具有组成为Al x Ga 1-x N(x表示组成比,在0
摘要:
Provided is a method for producing a group III nitride semiconductor light emitting device capable of producing a group III nitride semiconductor light emitting device with excellent light emitting properties with excellent productivity; a group III nitride semiconductor light emitting device; and a lamp.Provided is a method in which a buffer layer 12 composed of a group III nitride compound is laminated on a substrate 11 and then an n-type semiconductor layer 14 provided with an underlying layer 14a, a light emitting layer 15, and an p-type semiconductor layer 16 are sequentially laminated on the buffer layer 12, and is a method in which the buffer layer 12 is formed so as to have a composition of AlXGa1-XN (0≦X
摘要翻译:本发明提供能够制造发光性优异且生产率优异的III族氮化物半导体发光元件的III族氮化物半导体发光元件的制造方法。 III族氮化物半导体发光器件; 和一盏灯。 提供了一种方法,其中将由III族氮化物化合物构成的缓冲层12层压在基板11上,然后层叠设置有下层14a,发光层15和p型的n型半导体层14 半导体层16依次层叠在缓冲层12上,并且是通过用等离子体激活而形成缓冲层12以具有AlXGa1-XN(0 <= X <1)的组成的方法,从而 至少使金属Ga源和含有V族元素的气体反应,并且在缓冲层12上形成下层14。
摘要:
A method for manufacturing a Group III nitride semiconductor layer according to the present invention includes a sputtering step of disposing a substrate and a target containing a Group III element in a chamber, introducing a gas for formation of a plasma in the chamber and forming a Group III nitride semiconductor layer added with Si as a dopant on the substrate by a reactive sputtering method, wherein a Si hydride is added in the gas for formation of a plasma.