摘要:
A method of making a semiconductor structure includes forming a trench through a shallow trench isolation (STI) structure and into a substrate, and forming a liner including an electrical insulator material on sidewalls of the trench. The method also includes forming a core including a high thermal conductivity material in the trench and on the liner, and forming a cap in the trench and on the core.
摘要:
Methods for fabricating bipolar junction transistors, bipolar junction transistors, and design structures for a bipolar junction transistor. The bipolar junction transistor may include a plurality of emitters that are arranged in distinct emitter fingers. A silicide layer is formed that covers an extrinsic base layer of the bipolar junction transistor and that fills the gaps between adjacent emitters. Non-conductive spacers on the emitter sidewalls electrically insulate the emitters from the silicide layer. The emitters extend through the extrinsic base layer and the silicide layer to contact the intrinsic base layer. The emitters may be formed using sacrificial emitter pedestals in a replacement-type process.
摘要:
Methods for fabricating bipolar junction transistors, bipolar junction transistors, and design structures for a bipolar junction transistor. The bipolar junction transistor may include a plurality of emitters that are arranged in distinct emitter fingers. A silicide layer is formed that covers an extrinsic base layer of the bipolar junction transistor and that fills the gaps between adjacent emitters. Non-conductive spacers on the emitter sidewalls electrically insulate the emitters from the silicide layer. The emitters extend through the extrinsic base layer and the silicide layer to contact the intrinsic base layer. The emitters may be formed using sacrificial emitter pedestals in a replacement-type process.
摘要:
A heterojunction bipolar transistor (HBT) may include an n-type doped crystalline collector formed in an upper portion of a crystalline silicon substrate layer; a p-type doped crystalline p+Si1-xGex layer, formed above the n-type doped collector, that forms a p-type doped internal base of the HBT; a crystalline silicon cap formed on the p-type doped crystalline p+Si1-xGex layer, in which the crystalline silicon cap includes an n-type impurity and forms an n-type doped emitter of the HBT; and an n-type doped crystalline silicon emitter stack formed within an opening through an insulating layer to an upper surface of the crystalline silicon cap.
摘要:
An Integrated Circuit (IC) and a method of making the same. In one embodiment, the IC includes: a substrate; a first semiconductor layer disposed on the substrate; a shallow trench isolation (STI) extending through the first semiconductor layer to within a portion of the substrate, the STI substantially separating a first n+ region and a second n+ region; and a gate disposed on a portion of the first semiconductor layer and connected to the STI, the gate including: a buried metal oxide (BOX) layer disposed on the first semiconductor layer and connected to the STI; a cap layer disposed on the BOX layer; and a p-type well component disposed within the first semiconductor layer and the substrate, the p-type well component connected to the second n+ region.
摘要:
Lateral PNP bipolar junction transistors, methods for fabricating lateral PNP bipolar junction transistors, and design structures for a lateral PNP bipolar junction transistor. An emitter and a collector of the lateral PNP bipolar junction transistor are comprised of p-type semiconductor material that is formed by a selective epitaxial growth process. The source and drain each directly contact a top surface of a device region used to form the emitter and collector. A base contact may be formed on the top surface and overlies an n-type base defined within the device region. The emitter is laterally separated from the collector by the base contact. Another base contact may be formed in the device region that is separated from the other base contact by the base.
摘要:
Aspects of the invention provide for a bipolar transistor of a self-aligned emitter. In one embodiment, the invention provides a method of forming local wiring for a bipolar transistor with a self-aligned sacrificial emitter, including: performing an etch to remove the sacrificial emitter to form an emitter opening between two nitride spacers; depositing an in-situ doped emitter into the emitter opening; performing a recess etch to partially remove a portion of the in-situ doped emitter; depositing a silicon dioxide layer over the recessed in-situ doped emitter; planarizing the silicon dioxide layer via chemical mechanical polishing; etching an emitter trench over the recessed in-situ doped emitter; and depositing tungsten and forming a tungsten wiring within the emitter trench via chemical mechanical polishing.
摘要:
Disclosed is a transistor structure, having a completely silicided extrinsic base for reduced base resistance Rb. Specifically, a metal silicide layer covers the extrinsic base, including the portion of the extrinsic base that extends below the upper portion of a T-shaped emitter. One exemplary technique for ensuring that the metal silicide layer covers this portion of the extrinsic base requires tapering the upper portion of the emitter. Such tapering allows a sacrificial layer below the upper portion of the emitter to be completely removed during processing, thereby exposing the extrinsic base below and allowing the metal layer required for silicidation to be deposited thereon. This metal layer can be deposited, for example, using a high pressure sputtering technique to ensure that all exposed surfaces of the extrinsic base, even those below the upper portion of the emitter, are covered.
摘要:
Disclosed are embodiments of a bipolar or heterojunction bipolar transistor and a method of forming the transistor. The transistor can incorporate a dielectric layer sandwiched between an intrinsic base layer and a raised extrinsic base layer to reduce collector-base capacitance Ccb, a sidewall-defined conductive strap for an intrinsic base layer to extrinsic base layer link-up region to reduce base resistance Rb and a dielectric spacer between the extrinsic base layer and an emitter layer to reduce base-emitter Cbe capacitance. The method allows for self-aligning of the emitter to base regions and incorporates the use of a sacrificial dielectric layer, which must be thick enough to withstand etch and cleaning processes and still remain intact to function as an etch stop layer when the conductive strap is subsequently formed. A chemically enhanced high pressure, low temperature oxidation (HIPOX) process can be used to form such a sacrificial dielectric layer.
摘要:
Disclosed is a bipolar complementary metal oxide semiconductor (BiCMOS) or NPN/PNP device that has a collector, an intrinsic base above the collector, shallow trench isolation regions adjacent the collector, a raised extrinsic base above the intrinsic base, a T-shaped emitter above the extrinsic base, spacers adjacent the emitter, and a silicide layer that is separated from the emitter by the spacers.