Abstract:
A manufacturing method for a micromechanical component, and in particular for a micromechanical rotation rate sensor, which has a supporting first layer, an insulating second layer that is arranged on the first layer, and a conductive third layer that is arranged on the second layer. The method includes the following steps: provide the second layer, in the form of patterned first and second insulation regions, on the first layer; provide a first protective layer on an edge region of the first insulation regions and on a corresponding boundary region of the first layer; provide the third layer on the structure resulting from the previous steps; pattern out a structure of conductor paths running on the first insulation regions, and a functional structure of the micromechanical component above the second insulation regions, from the third layer; and remove the second layer in the second insulation regions, the second layer being protected in the first insulation regions by the first protective layer in such a way that it is essentially not removed there.
Abstract:
A method for manufacturing a micromechanical component, in particular, a surface-micromechanical yaw sensor, includes the following steps: providing a substrate having a front side and a back side; forming a micromechanical pattern on the front side; applying a protective layer on the micromechanical pattern on the front side; forming a micromechanical pattern on the back side, a resting on the micromechanical pattern on the front side taking place at least temporarily; removing the protective layer on the front side; and optionally further processing the micromechanical pattern on the front side and/or the micromechanical pattern on the back side.
Abstract:
A bonding pad structure, in particular for a micromechanical sensor, includes a substrate, an electrically insulating sacrificial layer provided on the substrate, a patterned conductor path layer buried in the sacrificial layer, a contact hole provided in the sacrificial layer, and a bonding pad base, composed of an electrically conductive material. The bonding pad base has a first region extending over the sacrificial layer, and a second layer in contact with the conductor path region and extending through the contact hole. A protective layer is provided at least temporarily on the sacrificial layer in a specific region beneath and around the bonding pad base to prevent underetching of the sacrificial layer beneath the bonding pad base during etching of the sacrificial layer in such a way that the substrate and/or the conductor path is exposed.
Abstract:
A rate-of-rotation sensor includes a three-layer system. The rate-of-rotation sensor and the conductor traces are patterned out of the third layer. The conductor traces are electrically insulated (isolated) by cutouts from other regions of the third layer and by a second electrically insulating layer from a first layer. Thus, a simple electrical contacting (configuration) is achieved that is patterned out of a three-layer system. Since the same etching process is used for the first and the third layer, an especially efficient manufacturing is possible.
Abstract:
An rate-of-rotation sensor having a Coriolis element, which is arranged over a surface of a substrate, is described. The Coriolis element is induced to oscillate in parallel to a first axis. In response to a Coriolis force, the Coriolis element is deflected in a second axis, which is perpendicular to the first axis. A proof element is provided to prove the deflection.
Abstract:
An integrated component having a substrate, the substrate having a cavity which surrounds a mechanical structure. The cavity is filled by a fluid of a specific composition under a specific pressure, and the mechanical properties of the mechanical structure are influenced by the fluid.
Abstract:
An integrated component having a substrate, the substrate having a cavity which surrounds a mechanical structure. The cavity is filled by a fluid of a specific composition under a specific pressure, and the mechanical properties of the mechanical structure are influenced by the fluid.
Abstract:
A rotation rate sensor having a substrate and a Coriolis element is proposed, the Coriolis element being situated above a surface of a substrate; the Coriolis element being able to be induced to vibrate in parallel to a first axis (X); an excursion of the Coriolis element being detectable, based on a Coriolis force in a second axis (Y), which is provided to be essentially perpendicular to the first axis (X); the first and second axes (X, Y) being provided parallel to the surface of the substrate, wherein force-conveying means are provided, the means being provided to convey a dynamic force effect between the substrate and the Coriolis element.
Abstract:
An exemplary embodiment of the present invention creates a micromechanical rotational rate sensor having a first Coriolis mass element and a second Coriolis mass element which may be situated over a surface of a substrate. An exemplary embodiment of a micromechanical rotational rate sensor may have an activating device by which the first Coriolis mass element and the second Coriolis mass element are able to have vibrations activated along a first axis. An exemplary embodiment of a micromechanical rotational rate sensor may have a detection device by which deflections of the first Coriolis mass elements and of the second Coriolis element are able to be detected along a second axis, which is perpendicular to the first axis, on the basis of a correspondingly acting Coriolis force. The first axis and second axis may run parallel to the surface of the substrate. The detecting device may have a first detection mass device and a second detection mass device. The centers of gravity of the first Coriolis mass element, the second Coriolis mass element, the first detection mass device and the second detection mass device may coincide at a common mass center of gravity when they are at rest.
Abstract:
A rotational rate sensor having a substrate and a Coriolis element is proposed, the Coriolis element being situated over a surface of a substrate; a driving arrangement being provided, by which the Coriolis element is induced to vibrations parallel to a first axis; a detection arrangement being provided, by which an excursion of the Coriolis elements is detectable on the basis of a Coriolis force in a second axis that is provided to be essentially perpendicular to the first axis; the first and second axis being parallel to the surface of the substrate; sensor elements that are designated to be at least partially movable with respect to the substrate being provided; a force-conveying arrangement being provided; the force-conveying arrangement being provided to convey a static force effect between the substrate and at least one of the sensor elements.