摘要:
Embodiments of the present invention relate to an apparatus and method of cyclical deposition utilizing three or more precursors in which delivery of at least two of the precursors to a substrate structure at least partially overlap. One embodiment of depositing a ternary material layer over a substrate structure comprises providing at least one cycle of gases to deposit a ternary material layer. One cycle comprises introducing a pulse of a first precursor, introducing a pulse of a second precursor, and introducing a pulse of a third precursor in which the pulse of the second precursor and the pulse of the third precursor at least partially overlap. In one aspect, the ternary material layer includes, but is not limited to, tungsten boron silicon (WBxSiy), titanium silicon nitride (TiSixNy), tantalum silicon nitride (TaSixNy), silicon oxynitride (SiOxNy), and hafnium silicon oxide (HfSixOy). In one aspect, the composition of the ternary material layer may be tuned by changing the flow ratio of the second precursor to the third precursor between cycles.
摘要:
A method for forming a tungsten layer on a substrate surface is provided. In one aspect, the method includes positioning the substrate surface in a processing chamber and exposing the substrate surface to a soak. A nucleation layer is then deposited on the substrate surface in the same processing chamber by alternately pulsing a tungsten-containing compound and a reducing gas selected from a group consisting of silane, disilane, dichlorosilane and derivatives thereof. A tungsten bulk layer may then be deposited on the nucleation layer using cyclical deposition, chemical vapor deposition, or physical vapor deposition techniques.
摘要:
Embodiments of the present invention relate to an apparatus and method of cyclical deposition utilizing three or more precursors in which delivery of at least two of the precursors to a substrate structure at least partially overlap. One embodiment of depositing a ternary material layer over a substrate structure comprises providing at least one cycle of gases to deposit a ternary material layer. One cycle comprises introducing a pulse of a first precursor, introducing a pulse of a second precursor, and introducing a pulse of a third precursor in which the pulse of the second precursor and the pulse of the third precursor at least partially overlap. In one aspect, the ternary material layer includes, but is not limited to, tungsten boron silicon (WBxSiy), titanium silicon nitride (TiSixNy), tantalum silicon nitride (TaSixNy), silicon oxynitride (SiOxNy), and hafnium silicon oxide (HfSixOy). In one aspect, the composition of the ternary material layer may be tuned by changing the flow ratio of the second precursor to the third precursor between cycles.
摘要:
Embodiments of the present invention relate to an apparatus and method of cyclical deposition utilizing three or more precursors in which delivery of at least two of the precursors to a substrate structure at least partially overlap. One embodiment of depositing a ternary material layer over a substrate structure comprises providing at least one cycle of gases to deposit a ternary material layer. One cycle comprises introducing a pulse of a first precursor, introducing a pulse of a second precursor, and introducing a pulse of a third precursor in which the pulse of the second precursor and the pulse of the third precursor at least partially overlap. In one aspect, the ternary material layer includes, but is not limited to, tungsten boron silicon (WBxSiy), titanium silicon nitride (TiSixNy), tantalum silicon nitride (TaSixNy), silicon oxynitride (SiOxNy), and hafnium silicon oxide (HfSixOy). In one aspect, the composition of the ternary material layer may be tuned by changing the flow ratio of the second precursor to the third precursor between cycles.
摘要翻译:本发明的实施方案涉及利用三种或更多种前体的循环沉积的装置和方法,其中至少两种前体至少部分重叠的衬底结构。 在衬底结构上沉积三元材料层的一个实施例包括提供至少一个循环的气体以沉积三元材料层。 一个周期包括引入第一前体的脉冲,引入第二前体的脉冲,以及引入第三前体的脉冲,其中第二前体的脉冲和第三前体的脉冲至少部分重叠。 在一个方面,三元材料层包括但不限于钨硼硅(W x Si x Si x Si x Si x Si x Si x Si x Si x Si x Si x Si x Si x Si x Si x <<) (TaSi x N y),氮化硅(TaSi x N y N y),氮氧化硅(SiO 2) N x Y)和氧化铪氧化铪(HfSi x O y y)。 在一个方面,三元材料层的组成可以通过在循环之间改变第二前体与第三前体的流动比来调节。
摘要:
In one embodiment of the invention, a method for forming a tungsten-containing layer on a substrate is provided which includes positioning a substrate containing a barrier layer disposed thereon in a process chamber, exposing the substrate to a first soak process for a first time period and depositing a nucleation layer on the barrier layer by flowing a tungsten-containing precursor and a reductant into the process chamber. The method further includes exposing the nucleation layer to a second soak process for a second time period and depositing a bulk layer on the nucleation layer. In one example, the barrier layer contains titanium nitride, the first and second soak processes independently comprise at least one reducing gas selected from the group consisting of hydrogen, silane, disilane, dichlorosilane, borane, diborane, derivatives thereof and combinations thereof and the nucleation layer may be deposited by an atomic layer deposition process or a pulsed chemical vapor deposition process while the bulk layer may be deposited by a chemical vapor deposition process or a physical vapor deposition process.
摘要:
Methods for the deposition of tungsten films are provided. The methods include depositing a nucleation layer by alternatively adsorbing a tungsten precursor and a reducing gas on a substrate, and depositing a bulk layer of tungsten over the nucleation layer.
摘要:
An apparatus for processing a substrate is provided. The apparatus includes a process chamber, and a dual-mode gas distribution plate disposed within the process chamber. The dual-mode gas distribution plate comprises a first gas distribution zone disposed in a center of the gas distribution plate, and a second gas distribution zone surrounding the first gas distribution zone, the second gas distribution zone being fluidly isolated from the first gas distribution zone, wherein the first gas distribution zone is coupled to a valve system to deliver sequential pulses of a first gas to the first gas distribution zone to perform a cyclical deposition process, and the second gas distribution zone is in communication with a flow controller to deliver a second gas to perform a chemical vapor deposition process.
摘要:
An apparatus and method for forming an integrated barrier layer on a substrate is described. The integrated barrier layer comprises at least a first refractory metal layer and a second refractory metal layer. The integrated barrier layer is formed using a dual-mode deposition process comprising a chemical vapor deposition (CVD) step and a cyclical deposition step. The dual-mode deposition process may be performed in a single process chamber.
摘要:
An apparatus and method for forming an integrated barrier layer on a substrate is described. The integrated barrier layer comprises at least a first refractory metal layer and a second refractory metal layer. The integrated barrier layer is formed using a dual-mode deposition process comprising a chemical vapor deposition (CVD) step and a cyclical deposition step. The dual-mode deposition process may be performed in a single process chamber.
摘要:
Embodiments of the invention provide methods for depositing tungsten materials. In one embodiment, a method for forming a composite tungsten film is provided which includes positioning a substrate within a process chamber, forming a tungsten nucleation layer on the substrate by subsequently exposing the substrate to a tungsten precursor and a reducing gas containing hydrogen during a cyclic deposition process, and forming a tungsten bulk layer during a plasma-enhanced chemical vapor deposition (PE-CVD) process. The PE-CVD process includes exposing the substrate to a deposition gas containing the tungsten precursor while depositing the tungsten bulk layer over the tungsten nucleation layer. In some example, the tungsten nucleation layer has a thickness of less than about 100 Å, such as about 15 Å. In other examples, a carrier gas containing hydrogen is constantly flowed into the process chamber during the cyclic deposition process.