摘要:
A micro-electromechanical system assembly is designed to integrate a laser. More particularly, laser is a vertical cavity surface-emitting laser. The MEMS assembly includes a micro-electromechanical substrate having an upper surface and a lower surface, the upper surface defined as having a first area and a second area. A first substrate bonding pad is positioned on the upper surface at a location within the first area, and a second substrate bonding pad is positioned on the upper surface at a location within the second area. Deposited upon the first and second substrate bonding areas are respective first and second solder material. A laser to be integrated in the MEMS assembly has a first laser bonding pad located on a first side, and a second laser bonding pad located on a second side. The laser is placed between the first substrate bonding pad and second substrate bonding pad such that they align with the respective first and second laser bonding pads. Upon a reflow of the solder material, a precise alignment of the laser is obtained while the reflow process occurs, and at the same time providing a mechanical and electrical connection between the bonding pads. In a further embodiment, the MEMS substrate is configured with a trench portion into which is placed the laser having the first and second laser bonding pads. Placement in the trench, is at least one of a 45° and 54.74° angle. Upon reflow of solder material on the substrate, the laser is finely positioned and held mechanically stable. In a further embodiment, the trench previously described includes a spring mechanism which carries a substrate bonding pad. The spring mechanism causing the laser within the trench to be maintained in a preferred position during and after the solder reflow process. Still yet another embodiment employs bimetallic cantilevers for positioning the laser and electrical interconnect.
摘要:
Provided is a micro-electromechanical assembly including an out-of-plane device formed on a device layer of a single crystal silicon substrate. A ribbon structure is formed on the device layer, where the ribbon structure has at least one of a width or depth, which is less than the width or depth of the out-of-plane device. A connection interface provides a connection point between a first end of the out-of-plane device and a first end of a ribbon structure, wherein the ribbon structure and out-of-plane device are integrated as a single piece.
摘要:
A method is disclosed for making shaped optical moems components with stressed thin films. In particular, stressed thin films are used to make mirror structures.
摘要:
A micro-optical-electrical-mechanical laser scanner is configured from a silicon-on-insulator substrate having a silicon substrate layer, a buried oxide layer, and a single crystal silicon device layer. A first device layer portion having a micro-mirror fabricated therefrom. A laser is connected to a second device layer portion, and a hinge connects the first device layer portion and the second device layer portion. The hinge is formed with a bimorph material, wherein the bimorph material creates built-in stresses in the hinge. The bimorph hinge moves the released micro-mirror out of the horizontal plane to a position for either directly or indirectly reflecting laser light emitted from the laser.
摘要:
Provided is a ribbon structure which may be used as part of a micro-assembly including a micro-device formed on or in a device layer of a single crystal silicon substrate. The ribbon structure is also formed in the device layer, where the ribbon structure is thinned to a thickness less than the thickness of the micro-device. The ribbon structure has an electrical conductive material deposited on its surface. When implemented as part of the micro-assembly, a first end of the micro-device and a first end of a ribbon structure are interconnected, wherein the ribbon structure and out-of-plane device are formed as a single piece.
摘要:
A vertical cavity laser apparatus is provided. In one embodiment, the apparatus includes an electrically responsive substrate; a support block positioned on the electrically responsive substrate; a bridge arm structure coupled to the support block, the structure having a base; a laser active area on the bridge arm structure, a tuning pad on the bridge arm structure, a laser bond pad on the bridge arm structure with traces connecting the laser bond pad to the laser active area and base. The traces are positioned and shaped to be symmetric to avoid problems due to the asymmetry of the injection current. Additionally, in this embodiment, the laser bond pad is kept at a height of the base in order to minimize device capacitance and the traces are also kept at the height of the base. Methods are also provided whereby impedance matching and high speed performance can be accomplished irregardless of the mechanical configuration of the bridge arm structure.
摘要:
An out-of-plane micro-structure which can be used for on-chip integration of high-Q inductors and transformers places the magnetic field direction parallel to the substrate plane without requiring high aspect ratio processing. The photolithographically patterned coil structure includes an elastic member having an intrinsic stress profile. The intrinsic stress profile biases a free portion away from the substrate forming a loop winding. An anchor portion remains fixed to the substrate. The free portion end becomes a second anchor portion which may be connected to the substrate via soldering or plating. A series of individual coil structures can be joined via their anchor portions to form inductors and transformers.
摘要:
An array of light emitters includes a plurality of light emitting structures formed over a layered structure with at least one quantum well layer. At least one cladding layer is formed on over the at least one quantum well layer. At least one waveguide layer is formed on or over the at least one cladding layer. At least one isolation region is formed at least in between at least two of the plurality of light emitting structures. The at least one isolation region isolates the at least two light emitting structures from each other.
摘要:
A MEMS-based adjustable mirror module allows faster, lower cost, and easier alignment of optical fibers in substrates. Movable mirrors formed on the substrate allow adjustment of the light path after the optical fiber is attached, after which the mirrors are affixed in place to prevent misalignment.
摘要:
A monolithic laser structure has an infrared laser structure side by side with a red laser structure. The infrared and red laser structures share the same substrate and have the same material for the cladding layers and for the cap and barrier reduction layers. The red and infrared laser structures can have native oxide confined or metal confined ridge waveguides.