Abstract:
Methods for making semiconductor devices are disclosed herein. A method configured in accordance with a particular embodiment includes forming a spacer material on an encapsulant such that the encapsulant separates the spacer material from an active surface of a semiconductor device and at least one interconnect projecting away from the active surface. The method further includes molding the encapsulant such that at least a portion of the interconnect extends through the encapsulant and into the spacer material. The interconnect can include a contact surface that is substantially co-planar with the active surface of the semiconductor device for providing an electrical connection with the semiconductor device.
Abstract:
Methods for making semiconductor devices are disclosed herein. A method configured in accordance with a particular embodiment includes forming a spacer material on an encapsulant such that the encapsulant separates the spacer material from an active surface of a semiconductor device and at least one interconnect projecting away from the active surface. The method further includes molding the encapsulant such that at least a portion of the interconnect extends through the encapsulant and into the spacer material. The interconnect can include a contact surface that is substantially co-planar with the active surface of the semiconductor device for providing an electrical connection with the semiconductor device.
Abstract:
A semiconductor die that includes a first die located on a first side of an interposer and a second die located on a second side of the interposer. Active sides of the first and second dies may each face the interposer. A bond wire may electrically connect the first die to the second side of the interposer and a bond wire may electrically connect the second die to the first side of the interposer. The bond wires may extend through a plurality of windows in the interposer. First and second dies may be attached to a first side of an interposer and may be electrically connected to a second side of the interposer through windows and third and fourth dies may be attached to a second side of the interposer and may be electrically connected to the first side of the interposer through windows.
Abstract:
Systems, devices, and methods for interconnects for a multi-die package are described. A multi-die package may include a set of conductive pillars and two or more semiconductor dice that each include a bond pad. In some cases, the multi-die package may include a plurality of pillar-wire combinations, and a bond wire may couple a corresponding conductive pillar with a corresponding bond pad. Pillar-wire combinations may each collectively have a matched impedance, or pillar-wire combinations in different groups may have different collective impedances. In other cases, a conductive pillar may be directly coupled with a corresponding bond pad without a bond wire. Different pillar-wire combinations or directly-coupled pillars may carry different signals. In some cases, pillars may be individually impedance-matched to a desired impedance.
Abstract:
A semiconductor die that includes a first die located on a first side of an interposer and a second die located on a second side of the interposer. Active sides of the first and second dies may each face the interposer. A bond wire may electrically connect the first die to the second side of the interposer and a bond wire may electrically connect the second die to the first side of the interposer. The bond wires may extend through a plurality of windows in the interposer. First and second dies may be attached to a first side of an interposer and may be electrically connected to a second side of the interposer through windows and third and fourth dies may be attached to a second side of the interposer and may be electrically connected to the first side of the interposer through windows.
Abstract:
Methods for making semiconductor devices are disclosed herein. A method configured in accordance with a particular embodiment includes forming a spacer material on an encapsulant such that the encapsulant separates the spacer material from an active surface of a semiconductor device and at least one interconnect projecting away from the active surface. The method further includes molding the encapsulant such that at least a portion of the interconnect extends through the encapsulant and into the spacer material. The interconnect can include a contact surface that is substantially co-planar with the active surface of the semiconductor device for providing an electrical connection with the semiconductor device.
Abstract:
Methods for making semiconductor devices are disclosed herein. A method configured in accordance with a particular embodiment includes forming a spacer material on an encapsulant such that the encapsulant separates the spacer material from an active surface of a semiconductor device and at least one interconnect projecting away from the active surface. The method further includes molding the encapsulant such that at least a portion of the interconnect extends through the encapsulant and into the spacer material. The interconnect can include a contact surface that is substantially co-planar with the active surface of the semiconductor device for providing an electrical connection with the semiconductor device.
Abstract:
A semiconductor die that includes a first die located on a first side of an interposer and a second die located on a second side of the interposer. Active sides of the first and second dies may each face the interposer. A bond wire may electrically connect the first die to the second side of the interposer and a bond wire may electrically connect the second die to the first side of the interposer. The bond wires may extend through a plurality of windows in the interposer. First and second dies may be attached to a first side of an interposer and may be electrically connected to a second side of the interposer through windows and third and fourth dies may be attached to a second side of the interposer and may be electrically connected to the first side of the interposer through windows.
Abstract:
A semiconductor die that includes a first die located on a first side of an interposer and a second die located on a second side of the interposer. Active sides of the first and second dies may each face the interposer. A bond wire may electrically connect the first die to the second side of the interposer and a bond wire may electrically connect the second die to the first side of the interposer. The bond wires may extend through a plurality of windows in the interposer. First and second dies may be attached to a first side of an interposer and may be electrically connected to a second side of the interposer through windows and third and fourth dies may be attached to a second side of the interposer and may be electrically connected to the first side of the interposer through windows.
Abstract:
Methods for making semiconductor devices are disclosed herein. A method configured in accordance with a particular embodiment includes forming a spacer material on an encapsulant such that the encapsulant separates the spacer material from an active surface of a semiconductor device and at least one interconnect projecting away from the active surface. The method further includes molding the encapsulant such that at least a portion of the interconnect extends through the encapsulant and into the spacer material. The interconnect can include a contact surface that is substantially co-planar with the active surface of the semiconductor device for providing an electrical connection with the semiconductor device.