Abstract:
An objective of the present invention is to provide a printed board capable of suppressing EMI emissions from an electric cable. To accomplish the objective, the present invention is a printed board including a signal wiring to which an electric cable is connected, the printed board including: ground layers above and below the signal wiring put on upper and lower sides of the signal wiring to which the electric cable is connected; and a plurality of through holes connecting the ground layers above and below the signal wiring, wherein the plurality of the through holes are disposed at and near the signal wiring and are spaced apart at intervals according to a wavelength corresponding to a maximum frequency of electromagnetic waves to be suppressed.
Abstract:
[Problem] To achieve a wiring board capable of suppressing the difference in the amount of delay between two signal wirings constituting differential signal wirings, while securing flexibility in design.[Solution] A wiring board is configured to include a first insulating layer 1, a first signal wiring 2 and a second signal wiring 3. The first insulating layer 1 includes fibers 4 having the long axis in a first direction and aligned approximately parallel to each other at a first interval and an insulating material 5 filling gaps between the fibers 4 of the first direction. The first signal wiring 2 is formed approximately parallel to the first direction on the first insulating layer 1. The second signal wiring 3 is formed parallel to the first signal wiring 2 such that the interval between the first and second signal wirings 2 and 3 be approximately an integral multiple of the first interval, and the second signal wiring 3 transmits a differential signal of a signal transmitted on the first signal wiring 2.
Abstract:
To provide a printed board that solves the problem of transmission characteristics deterioration, the disclosed printed board includes a substrate, a circular signal pad that is provided on the substrate, a doughnut-shaped ground pad, which sandwiches the substrate that surrounds, in a doughnut shape, the signal pad, and which surrounds the outer circumference of the substrate, and one or more recessed sections that are disposed on the substrate that surrounds, in the doughnut shape, the signal pad.
Abstract:
The present invention addresses providing an electromagnetic wave reducing structure that can reduce leakage to outside of noise that is emitted by a circuit, from low frequency to high frequency, without using a special, difficult to obtain item. To address this problem, the electromagnetic wave reducing structure is provided with: a first conductor layer and a second conductor layer facing opposite each other; and a capacitor group comprising a plurality of capacitors connected to the first conductor layer and the second conductor layer. All the gaps are approximately equal between the capacitors in any pair of adjacent capacitors in a first direction within the plane and any pair of adjacent capacitors in a second direction which is the direction within the plane that is approximately perpendicular to the first direction, in a surface parallel to the surface of the first conductor layer that faces opposite the second conductor layer.
Abstract:
A printed wiring board is provided with a wiring layer, a first ground layer, a second ground layer, a grounding through-hole, a signal through-hole, a first clearance, and a second clearance. The wiring layer has a signal line. The first ground layer has a first ground plane. The second ground layer is positioned between the wiring layer and the first ground layer and has a second ground plane. The grounding through-hole passes through the wiring layer, the first ground layer, and the second ground layer and is connected to the second ground plane. The signal through-hole passes through the wiring layer, the first ground layer, and the second ground layer and is connected to the signal line. The first clearance is formed in the first ground layer, is positioned in the vicinity of the signal through-hole and the grounding through-hole, and separates the first ground plane from the signal through-hole and the grounding through-hole. The second clearance is formed in the second ground layer, is positioned in the vicinity of the signal through-hole, and separates the second ground plane from the signal through-hole.
Abstract:
A printed wiring board comprises: an insulation layer configured by a glass cloth in which fiber is woven, and a resin with which the glass cloth is impregnated; first wiring configured by a first line, a second line, and a third line; and second wiring configuring by a fourth line, a fifth line, and a sixth line, wherein a line length of the first line and a line length of the second line are equal to each other, a line length of the fifth line and a line length of the sixth line are equal to each other, a line length of the fourth line and the fifth line and a line length of the first line and the second line are equal to each other, and a line length of the first wiring and a line length of the second wiring are equal to each other.
Abstract:
The present invention addresses the problem of reducing a delay time difference between signals transmitted by means of a differential signal wires in a wiring board having glass cloth. A wiring board comprises: an insulating layer which includes fibers having a planar shape with translational symmetry with respect to two linearly independent, predetermined translational vectors, and a layer-like insulating material encapsulating the fibers; and through-holes formed at the starting and end points of a vector which is the sum of substantially integral multiples of the two translational vectors and which has the starting point on the planar shape.
Abstract:
The present invention addresses the problem of providing a connecting structure or similar that can minimize a decrease in a wireable region of a substrate while reducing the effect of stubs of a pair of vias on the output of a capacitor that is connected to said vias. In order to solve this problem, this connecting structure comprises: a first conductor that passes through a substrate and is provided with a first input/output section; a second conductor that passes through the substrate and is provided with a second input/output section; a first capacitor, one terminal of which being connected to a terminal of the first conductor that is on a first surface of the substrate, the other terminal of which being connected to a terminal of the second conductor that is on the first surface of the substrate; and a second capacitor or a resistor.
Abstract:
An objective of the present invention is to provide a printed board being capable of suppressing EMI emissions from power supply wirings. To accomplish the objective, a printed board of the present invention includes a plurality of ground layers disposed in a printed board, a power supply layer put between the plurality of the ground layers, and through holes disposed along at least periphery of the printed board and connecting the plurality of the ground layers, wherein the through holes are disposed at intervals according to a wavelength corresponding to a maximum frequency of electromagnetic waves to be suppressed.Further, a printed board of the present invention includes a power supply layer disposed in a printed board and put between ground layers above and below the power supply layers, and a plurality of through holes connecting the ground layers above and below the power supply layers, wherein the plurality of the through holes are disposed at and near the power supply layer and are spaced apart at intervals according to a wavelength corresponding to a maximum frequency of electromagnetic waves to be suppressed.
Abstract:
An electronic substrate 100 includes: a substrate member 110 which has a shape of plane plate and whose pair of main surfaces 110a and 110b are opposite each other; a plurality of connection terminals 130 which are formed so as to be arranged on an edge side of the substrate member 110 and on at least one surface out of the pair of main surfaces 110a and 110b of the substrate member 110; a plurality of wirings 120 which are connected with the plural connection terminals 130; and a plurality of openings 140A arranged in an area, which exists between connection terminals 130 adjacent each other out of the plural connection terminals 130 and in which the connection terminals 130 adjacent each other extend, in an extending direction of the connection terminals 130 adjacent each other.