摘要:
The invention includes a method of filling gaps in a semiconductor substrate. A substrate and a gas mixture containing at least one heavy-hydrogen compound are provided within a reaction chamber. The gas mixture is reacted to form a layer of material over the substrate by simultaneous deposition and etch of the layer. The layer of material fills the gap such that the material within the gap is essentially void-free. The invention includes a method of providing improved deposition rate uniformity. A material is deposited over a surface in the presence of at least one gas selected from the group consisting of D2, HD, DT, T2 and TH. The net deposition rate during the deposition has a degree of variance across the surface which is measurably improved relative to a corresponding degree of variance that occurs during deposition utilizing H2 under otherwise substantially identical conditions.
摘要:
A method including, prior to a plasma heat-up operation, forming a liner on structure coated with an insulator. And a method including forming a trench on a substrate, forming an insulator on the trench, and after forming a liner having a thickness of between about 50 angstroms and about 400 angstroms on the insulator, applying a plasma heat-up operation to the substrate.
摘要:
A method including, prior to a plasma heat-up operation, forming a liner on a structure coated with an insulator. And a method including forming a trench on a substrate, forming an insulator on the trench, and after forming a liner having a thickness of between about 50 angstroms and about 400 angstroms on the insulator, applying a plasma heat-up operation to the substrate.
摘要:
The invention includes a method of filling gaps in a semiconductor substrate. A substrate and a gas mixture containing at least one heavy-hydrogen compound are provided within a reaction chamber. The gas mixture is reacted to form a layer of material over the substrate by simultaneous deposition and etch of the layer. The layer of material fills the gap such that the material within the gap is essentially void-free. The invention includes a method of providing improved deposition rate uniformity. A material is deposited over a surface in the presence of at least one gas selected from the group consisting of D2, HD, DT, T2 and TH. The net deposition rate during the deposition has a degree of variance across the surface which is measurably improved relative to a corresponding degree of variance that occurs during deposition utilizing H2 under otherwise substantially identical conditions.
摘要:
The invention includes a method of filling gaps in a semiconductor substrate. A substrate and a gas mixture containing at least one heavy-hydrogen compound are provided within a reaction chamber. The gas mixture is reacted to form a layer of material over the substrate by simultaneous deposition and etch of the layer. The layer of material fills the gap such that the material within the gap is essentially void-free. The invention includes a method of providing improved deposition rate uniformity. A material is deposited over a surface in the presence of at least one gas selected from the group consisting of D2, HD, DT, T2 and TH. The net deposition rate during the deposition has a degree of variance across the surface which is measurably improved relative to a corresponding degree of variance that occurs during deposition utilizing H2 under otherwise substantially identical conditions.
摘要:
The invention encompasses a method for sequentially processing separate sets of wafers within a chamber. Each set is subjected to plasma-enhanced deposition of material within the chamber utilizing a plasma that is primarily inductively coupled. After the plasma-enhanced deposition, and while the set remains within the chamber, the plasma is changed to a primarily capacitively coupled plasma. The cycling of the plasma from primarily inductively coupled to primarily capacitively coupled can increase the ratio of processed wafers to plasma reaction chamber internal sidewall cleanings that can be obtained while maintaining low particle counts on the processed wafers.
摘要:
The invention encompasses a method for sequentially processing separate sets of wafers within a chamber. Each set is subjected to plasma-enhanced deposition of material within the chamber utilizing a plasma that is primarily inductively coupled. After the plasma-enhanced deposition, and while the set remains within the chamber, the plasma is changed to a primarily capacitively coupled plasma. The cycling of the plasma from primarily inductively coupled to primarily capacitively coupled can increase the ratio of processed wafers to plasma reaction chamber internal sidewall cleanings that can be obtained while maintaining low particle counts on the processed wafers.
摘要:
The present invention is generally directed to a novel gas delivery system for various deposition processes, and various methods of using same. In one illustrative embodiment, a deposition tool comprises a process chamber, a wafer stage adapted for holding a wafer positioned therein, and a gas delivery system positioned in the chamber above a position where a plasma will be generated in the chamber, wherein substantially all of a reactant gas is delivered into the chamber via the gas delivery system. In another illustrative embodiment, the reactant gas exiting the gas delivery system is directed so as to cover substantially all of an area defined by an upper surface of the wafer. In one illustrative embodiment, the method comprises positioning a wafer in a process chamber of a deposition tool, generating a plasma within the process chamber above the wafer, and forming a layer of material above the wafer by introducing substantially all of a reactant gas used to form the layer of material into the process chamber above the plasma via a gas delivery system positioned above the plasma. In another illustrative embodiment, the reactant gas exiting the gas delivery system is directed to cover substantially all of an area defined by an upper surface of the wafer.
摘要:
The present disclosure includes field emission device embodiments. The present disclosure also includes method embodiments for forming field emitting devices. One device embodiment includes a housing defining an interior space including a lower portion and an upper portion, a cathode positioned in the lower portion of the housing, a elongate nanostructure coupled to the cathode, an anode positioned in the upper portion of the housing, and a control grid positioned between the elongate nanostructure and the anode to control electron flow between the anode and the elongate nanostructure.
摘要:
Multiple pitch-multiplied spacers are used to form mask patterns having features with exceptionally small critical dimensions. One of each pair of spacers formed around a plurality of mandrels is removed and alternating layers, formed of two mutually selectively etchable materials, are deposited around the remaining spacers. Layers formed of one of the materials are then etched, leaving behind vertically-extending layers formed of the other of the materials, which form a mask pattern. Alternatively, instead of depositing alternating layers, amorphous carbon is deposited around the remaining spacers followed by a plurality of cycles of forming pairs of spacers on the amorphous carbon, removing one of the pairs of spacers and depositing an amorphous carbon layer. The cycles can be repeated to form the desired pattern. Because the critical dimensions of some features in the pattern can be set by controlling the width of the spaces between spacers, exceptionally small mask features can be formed.