摘要:
A wafer level chip size package (WLCSP) and a method of manufacturing the same are disclosed. Lands are formed at the ends of redistribution layers. The redistribution layers excluding the lands and a first dielectric layer are covered with a second dielectric layer. After forming a first under bump metallurgy (UBM) layer on the land, a solder ball is reflowed to the first UBM layer. A second UBM layer is widely formed on the entire second dielectric layer that is the outer circumference of the first UBM layer and is connected to the redistribution layer through a via-hole. Therefore, the second UBM layer having a large area can be used as a ground plane or a power plane. In addition, the second UBM layer can electrically connect the redistribution layers physically separated from each other. Therefore, the plurality of redistribution layers can cross each other without being electrically shorted with each other.
摘要:
The system for operating a match-up game includes a display unit having a plurality of player screen regions configured to display game screens a first input unit configured to receive an input from a first player a second input unit configured to receive an input from a second player a first air outlet configured to discharge air to the first player a second air outlet configured to discharge air to the second player; a control unit configured to control the display unit to count a game time and change the game screens displayed on the player screen regions for each counted game time, and when receiving an input to the first input unit from the first player, control the second air outlet so as to discharge air corresponding to the received input. The system for operating a match-up game may increase a player's sense of immersion.
摘要:
A plating structure for wafer level packages are disclosed and may include a semiconductor wafer comprising a plurality of semiconductor die and a plating structure for forming an under bump metal on redistribution layers on the plurality of semiconductor die. The plating structure may comprise a plating connection line around a periphery of the semiconductor wafer, and a plating bar coupling the plating connection line to plating traces on the plurality of semiconductor die. The plating traces may be electrically coupled to the redistribution layers on the plurality of semiconductor die. The semiconductor wafer may comprise a reconstituted wafer of said semiconductor die. The semiconductor wafer may comprise a wafer prior to singulating the plurality of semiconductor die. The plating bar may be located in a sawing line for the singulating of the plurality of semiconductor die. A passivation layer may cover the redistribution layer and the plating traces.
摘要:
A semiconductor package and manufacturing method thereof are disclosed and may include a first semiconductor device comprising a first bond pad on a first surface of the first semiconductor device, a first encapsulant material surrounding side edges of the first semiconductor device, and a redistribution layer (RDL) formed on the first surface of the first semiconductor device and on a first surface of the encapsulant material. The RDL may electrically couple the first bond pad to a second bond pad formed above the first surface of the encapsulant material. A second semiconductor device comprising a third bond pad on a first surface of the second semiconductor device may face the first surface of the first semiconductor device and be electrically coupled to the first bond pad on the first semiconductor device. The first surface of the first semiconductor device may be coplanar with the first surface of the encapsulant material.
摘要:
A semiconductor package with improved redistribution layer design and fabricating method thereof are disclosed and may include a semiconductor die comprising bond pads, a first redistribution layer (RDL) formed on the semiconductor die. The first RDL has a first end coupled to a bond pad and a second end coupled to a solder bump via under bump metal layers. A second RDL is formed in a same plane of the semiconductor die as the first RDL and is electrically isolated from the first RDL. A first end of the second RDL may be coupled to a bond pad and the second RDL may pass underneath, but be electrically isolated from, the solder bump. A passivation layer may be formed on the first and second RDLs exposing the second end of the first RDL. The under bump metal layers may be formed on the second end of the first RDL exposed by the passivation layer.
摘要:
The system for operating a match-up game includes a display unit having a plurality of player screen regions configured to display game screens a first input unit configured to receive an input from a first player a second input unit configured to receive an input from a second player a first air outlet configured to discharge air to the first player a second air outlet configured to discharge air to the second player; a control unit configured to control the display unit to count a game time and change the game screens displayed on the player screen regions for each counted game time, and when receiving an input to the first input unit from the first player, control the second air outlet so as to discharge air corresponding to the received input. The system for operating a match-up game may increase a player's sense of immersion.
摘要:
A plating structure for wafer level packages are disclosed and may include a semiconductor wafer comprising a plurality of semiconductor die and a plating structure for forming an under bump metal on redistribution layers on the plurality of semiconductor die. The plating structure may comprise a plating connection line around a periphery of the semiconductor wafer, and a plating bar coupling the plating connection line to plating traces on the plurality of semiconductor die. The plating traces may be electrically coupled to the redistribution layers on the plurality of semiconductor die. The semiconductor wafer may comprise a reconstituted wafer of said semiconductor die. The semiconductor wafer may comprise a wafer prior to singulating the plurality of semiconductor die. The plating bar may be located in a sawing line for the singulating of the plurality of semiconductor die. A passivation layer may cover the redistribution layer and the plating traces.