摘要:
Disclosed is a method for manufacturing a thin-film solar cell using plasma between a couple of parallel electrodes. In the method, a base member is placed in a chamber between a first electrode and a second electrode facing each other. A hydrogen gas is heated, and thus heated hydrogen gas and a silicon-based gas are introduced into a space between the first electrode and the second electrode. A ratio of a flow rate of the heated hydrogen gas to that of the silicon-based gas is at least 25 and no more than 58. A plasma is generated between the first electrode and the second electrode by applying high-frequency power to the second electrode while a pressure in the chamber is 1000 Pa or higher, and an optically active layer containing crystalline silicon is deposited on the base material.
摘要:
A photoelectric conversion module comprises: a substrate having a first surface on which a light is incident and a second surface located at the opposite side of the first surface; a photoelectric conversion element provided on the second surface of the substrate; a light-transmitting member provided on the photoelectric conversion element; and a reflecting member provided on the light-transmitting member and configured to reflect a light having transmitted through the light-transmitting member. The reflecting member comprises an inclined light reflection surface that allows a light reflected from the reflecting member to be totally reflected at the first surface of the substrate.
摘要:
In order to form a high quality film without causing in-plane nonuniformity in film quality, an apparatus for forming deposited film according to an aspect of the present invention includes: a chamber; a first electrode located in the chamber; a second electrode that is located in the chamber with a predetermined spacing from the first electrode and includes a plurality of supply parts configured to supply material gases; an introduction path connected to the supply parts, through which the material gases are introduced; a heater located in the introduction path; and a cooling mechanism configured to cool the second electrode.
摘要:
In order to form a high quality film without causing in-plane nonuniformity in film quality, an apparatus for forming deposited film according to an aspect of the present invention includes: a chamber; a first electrode located in the chamber; a second electrode that is located in the chamber with a predetermined spacing from the first electrode and includes a plurality of supply parts configured to supply material gases; an introduction path connected to the supply parts, through which the material gases are introduced; a heater located in the introduction path; and a cooling mechanism configured to cool the second electrode.
摘要:
Disclosed is a method for manufacturing a thin-film solar cell using plasma between a couple of parallel electrodes. In the method, a base member is placed in a chamber between a first electrode and a second electrode facing each other. A hydrogen gas is heated, and thus heated hydrogen gas and a silicon-based gas are introduced into a space between the first electrode and the second electrode. A ratio of a flow rate of the heated hydrogen gas to that of the silicon-based gas is at least 25 and no more than 58. A plasma is generated between the first electrode and the second electrode by applying high-frequency power to the second electrode while a pressure in the chamber is 1000 Pa or higher, and an optically active layer containing crystalline silicon is deposited on the base material.
摘要:
Provided is a superstrate type a-Si:H thin film solar cell of which the device characteristics are improved as compared with conventional ones. The solar cell device is manufactured by a process comprising depositing phosphorus on a transparent conductive film formed on a transparent substrate and sequentially forming a p-type layer, an i-type layer, and an n-type layer which are formed of a-Si:H on the transparent conductive film by a plasma CVD method. The phosphorus is deposited, for example, by plasmatization of phosphorus-containing gas. Alternatively, the phosphorus is deposited by etching a phosphorus source provided in a margin region where a plasma excitation voltage is applied but no transparent substrate is placed, with hydrogen plasma at the start of the formation of the p-type layer by the plasma CVD method. Preferably, the deposition of phosphorus is controlled so that the arithmetic average value (ΔCav) of the concentration difference between boron and phosphorus within a range of diffusion of boron in the i-type layer may be 1.1×1017(cm−3)≦ΔCav≦1.6×1017(cm−3) or less.
摘要:
First and second electrodes are apart from each other in a chamber. Plates are disposed on a substrate in the second electrode. Each of the plates comprises first and second parts for supplying first and second gas to a space between the first and second electrodes, respectively, a first supply path for first gas connected to the first part, and a second supply path for second gas connected to the second part. The substrate comprises a heater for the first gas, a first introducing path for introducing the first gas to the first supply path, and a second introducing path for introducing the second gas to the second supply path. The second supply path comprises a mainstream part without the second part and branch parts with the second part. A connecting portion of the second introducing path and the mainstream part is positioned in an adjacent portion of the plates.
摘要:
First and second electrodes are apart from each other in a chamber. Plates are disposed on a substrate in the second electrode. Each of the plates comprises first and second parts for supplying first and second gas to a space between the first and second electrodes, respectively, a first supply path for first gas connected to the first part, and a second supply path for second gas connected to the second part. The substrate comprises a heater for the first gas, a first introducing path for introducing the first gas to the first supply path, and a second introducing path for introducing the second gas to the second supply path. The second supply path comprises a mainstream part without the second part and branch parts with the second part. A connecting portion of the second introducing path and the mainstream part is positioned in an adjacent portion of the plates.
摘要:
In order to form a high-quality Si-based film at high speed, for example, a deposited film forming device according to one aspect of the present invention includes: a chamber; a first electrode arranged in the chamber; and a second electrode arranged in the chamber and spaced a certain distance from the first electrode. The second electrode includes first and second supplying parts. The first supplying part supplies a first material gas and generates hollow cathode discharge. The second supplying part supplies a second material gas higher in decomposition rate than the first material gas.
摘要:
A solar cell element and a solar cell module are disclosed. The solar cell element includes a polycrystalline silicon substrate and an aluminum oxide layer on the p-type semiconductor layer. The polycrystalline silicon substrate includes a p-type semiconductor layer located at the uppermost position. The aluminum oxide layer is primarily amorphous. The solar cell module includes the above-mentioned solar cell element.