Abstract:
The present invention is intended to provide a method of producing a Group III nitride crystal that prevents a halogen-containing by-product from adversely affecting crystal generation and is superior in reactivity and operability. A method of producing a Group III nitride crystal includes a step of causing a Group III metal to react with an oxidizing gas and nitrogen-containing gas, thereby producing a Group III nitride crystal.
Abstract:
A large Group III nitride crystal of high quality with few defects such as a distortion, a dislocation, and warping is produced by vapor phase epitaxy. A method for producing a Group III nitride crystal includes: a first Group III nitride crystal production process of producing a first Group III nitride crystal 1003 by liquid phase epitaxy; and a second Group III nitride crystal production process of producing a second Group III nitride crystal 1004 on the first crystal 1003 by vapor phase epitaxy. In the first Group III nitride crystal production process, the surfaces of seed crystals 1003a (preliminarily provided Group III nitride) are brought into contact with an alkali metal melt, a Group III element and nitrogen are cause to react with each other in a nitrogen-containing atmosphere in the alkali metal melt, and the Group III nitride crystals are bound together by growth of the Group III nitride crystals grown from the seed crystals 1003a to produce a first crystal 1003.
Abstract:
A large Group III nitride crystal of high quality with few defects such as a distortion, a dislocation, and warping is produced by vapor phase epitaxy. A method for producing a Group III nitride crystal includes: a first Group III nitride crystal production process of producing a first Group III nitride crystal 1003 by liquid phase epitaxy; and a second Group III nitride crystal production process of producing a second Group III nitride crystal 1004 on the first crystal 1003 by vapor phase epitaxy by causing a Group III element metal to react with an oxidizing agent and nitrogen-containing gas. In the first Group III nitride crystal production process, the surfaces of seed crystals 1003a (preliminarily provided Group III nitride) are brought into contact with an alkali metal melt, a Group III element and nitrogen are cause to react with each other in a nitrogen-containing atmosphere in the alkali metal melt, and the Group III nitride crystals are bound together by growth of the Group III nitride crystals grown from the seed crystals 1003a to produce a first crystal 1003.
Abstract:
To provide a method for producing a Group III element nitride crystal by growing it on a plane on the −c-plane side as a crystal growth plane. The present invention is a method for producing a Group III element nitride crystal, including a vapor phase growth step of growing a Group III element nitride crystal 12 on a crystal growth plane of a Group III element nitride seed crystal 11 by vapor deposition. The vapor phase growth step is a step of causing a Group III metal, an oxidant, and a nitrogen-containing gas to react with one another to grow the Group III element nitride crystal 12 or includes: a reduced product gas generation step of causing a Group III element oxide and a reducing gas to react with each other to generate a gas of a reduced product of the Group III element oxide; and a crystal generation step of causing the gas of the reduced product and a nitrogen-containing gas to react with each other to generate the Group III element nitride crystal 12. The crystal growth plane is a plane on the −c-plane side. A crystal growth temperature is 1200° C. or more. In the vapor phase growth step, the Group III element nitride crystal is grown in an approximately −c direction.
Abstract:
There is provided a manufacturing method of a III-V compound crystal including a seed-crystal-formed substrate provision step of providing a seed-crystal-formed substrate in which a III-V compound seed crystal has been formed on a substrate, a seed crystal partial separation step of separating part of a portion in contact with the substrate in the III-V compound seed crystal from the substrate, and a crystal growth step of generating and growing the III-V compound crystal by reacting a group III element and a group V element with use of the III-V compound seed crystal as a nucleus after the seed crystal partial separation step.
Abstract:
There is provided a method for manufacturing a nitride crystal substrate, including: arranging a plurality of seed crystal substrates made of a nitride crystal in a planar appearance, so that their main surfaces are parallel to each other and their lateral surfaces are in contact with each other; growing a first crystal film using a vapor-phase growth method on a surface of the plurality of seed crystal substrates arranged in the planar appearance, and preparing a combined substrate formed by combining the adjacent seed crystal substrates each other by the first crystal film; growing a second crystal film using a liquid-phase growth method on a main surface of the combined substrate so as to be embedded in a groove that exists at a combined part of the seed crystal substrates, and preparing a substrate for crystal growth having a smoothened main surface; and growing a third crystal film using the vapor-phase growth method, on the smoothed main surface of the substrate for crystal growth.
Abstract:
The present invention provides a method for producing a Group III nitride crystal, capable of producing a Group III nitride crystal in a large size with few defects and high quality. The method is a method for producing a Group III nitride crystal (13), including: a seed crystal selection step of selecting plural parts of a Group III nitride crystal layer (11) as seed crystals for generation and growth of Group III nitride crystals (13); a contact step of causing the surfaces of the seed crystals to be in contact with an alkali metal melt; a crystal growth step of causing a Group III element and nitrogen to react with each other under a nitrogen-containing atmosphere in the alkali metal melt to generate and grow the Group III nitride crystals (13), wherein the seed crystals are hexagonal crystals, in the seed crystal selection step, the seed crystals are arranged so that m-planes of the respective crystals grown from the seed crystals that are adjacent to each other do not substantially coincide with each other, and in the crystal growth step, the plural Group III nitride crystals (13) grown from the plural seed crystals by the growth of the Group III nitride crystals (13) are bound.
Abstract:
There is provided a manufacturing method of a III-V compound crystal including a seed-crystal-formed substrate provision step of providing a seed-crystal-formed substrate in which a III-V compound seed crystal has been formed on a substrate, a seed crystal partial separation step of separating part of a portion in contact with the substrate in the III-V compound seed crystal from the substrate, and a crystal growth step of generating and growing the III-V compound crystal by reacting a group III element and a group V element with use of the III-V compound seed crystal as a nucleus after the seed crystal partial separation step.
Abstract:
The present invention provides a method for producing a Group III nitride crystal, capable of producing a Group III nitride crystal in a large size with few defects and high quality. The method is a method for producing a Group III nitride crystal (13), including: a seed crystal selection step of selecting plural parts of a Group III nitride crystal layer (11) as seed crystals for generation and growth of Group III nitride crystals (13); a contact step of causing the surfaces of the seed crystals to be in contact with an alkali metal melt; a crystal growth step of causing a Group III element and nitrogen to react with each other under a nitrogen-containing atmosphere in the alkali metal melt to generate and grow the Group III nitride crystals (13), wherein the seed crystals are hexagonal crystals, in the seed crystal selection step, the seed crystals are arranged so that m-planes of the respective crystals grown from the seed crystals that are adjacent to each other do not substantially coincide with each other, and in the crystal growth step, the plural Group III nitride crystals (13) grown from the plural seed crystals by the growth of the Group III nitride crystals (13) are bound.
Abstract:
A method for manufacturing a group III nitride semiconductor crystal substrate includes providing, as a seed crystal substrate, a group III nitride single crystal grown by a liquid phase growth method, and homoepitaxially growing a group III nitride single crystal by a vapor phase growth method on a principal surface of the seed crystal substrate. The principal surface of the seed crystal substrate is a +c-plane, and the seed crystal substrate has an atomic oxygen concentration of not more than 1×1017 cm−3 in a crystal near the principal surface over an entire in-plane region thereof.