摘要:
An optoelectronic device includes a carrier on which a semiconductor layer sequence is applied, said semiconductor layer sequence including an n-doped semiconductor layer and a p-doped semiconductor layer such that a p-n junction is formed which includes an active zone that generates electromagnetic radiation, wherein at least one of the n-doped semiconductor layer and the p-doped semiconductor layer includes a doped region having a first doping concentration greater than a second doping concentration in a surrounding area of the region in the semiconductor layer including the region.
摘要:
A semiconductor layer sequence and a method for producing a semiconductor layer sequence are disclosed. In an embodiment a semiconductor layer sequence includes a first nitridic compound semiconductor layer, an intermediate layer, a second nitridic compound semiconductor layer and an active layer, wherein the intermediate layer comprises an AlGaN layer with an Al content of at least 5%, wherein the second nitridic compound semiconductor layer has a lower proportion of Al than the AlGaN layer such that relaxed lattice constants of the AlGaN layer of the intermediate layer and of the second nitridic compound semiconductor layer differ, wherein the second nitridic compound semiconductor layer and the active layer are grown on the intermediate layer in a lattice-matched manner, wherein the active layer comprises one or more layers of AlInGaN, and wherein an In content in each of the layers of AlInGaN is at most 12%.
摘要:
A method for producing an electronic semiconductor chip and a semiconductor chip are disclosed. In embodiments, the method includes providing a growth substrate having a growth surface formed by a flat region having a plurality of three-dimensional surface structures on the flat region, directly applying a nucleation layer of oxygen-containing AlN over a large area to the growth surface and growing a nitride-based semiconductor layer sequence on the nucleation layer, wherein growing the semiconductor layer sequence includes selectively growing the semiconductor layer sequence upwards from the flat region.
摘要:
A method for producing an electronic semiconductor chip and a semiconductor chip are disclosed. In embodiments, the method includes providing a growth substrate having a growth surface formed by a flat region having a plurality of three-dimensional surface structures on the flat region, directly applying a nucleation layer of oxygen-containing AlN over a large area to the growth surface and growing a nitride-based semiconductor layer sequence on the nucleation layer, wherein growing the semiconductor layer sequence includes selectively growing the semiconductor layer sequence upwards from the flat region.
摘要:
In an embodiment an electronic semiconductor chip includes a growth substrate with a growth surface including a flat region having a plurality of three-dimensionally designed surface structures on the flat region, a nucleation layer composed of oxygen-containing AlN in direct contact with the growth surface at the flat region and the three-dimensionally designed surface structures and a nitride-based semiconductor layer sequence on the nucleation layer, wherein the semiconductor layer sequence overlays the three-dimensionally designed surface structures, and wherein the oxygen content in the nucleation layer is greater than 1019 cm−3.
摘要:
A method of producing a radiation-emitting semiconductor chip includes providing a growth substrate, epitaxially growing a buffer layer on the growth substrate such that a plurality of V-pits is generated in the buffer layer, epitaxially growing a radiation-generating active semiconductor layer sequence on the buffer layer, wherein the structure of the V-pits continues into the active semiconductor layer sequence, epitaxially growing a further layer sequence on the active semiconductor layer sequence, wherein the structure of the V-pits continues into the further layer sequence, selectively removing the further layer sequence from facets of the V-pits, wherein the further layer sequence remains on a main surface of the active semiconductor layer sequence, and epitaxially growing a p-doped semiconductor layer that completely or partially fills the V-pits.
摘要:
A semiconductor chip and a method for producing a semiconductor chip are disclosed. In an embodiment an electronic semiconductor chip includes a growth substrate with a growth surface, which is formed by a planar region having a plurality of three-dimensional surface structures on the planar region, a nucleation layer composed of oxygen-containing AlN directly disposed on the growth surface and a nitride-based semiconductor layer sequence disposed on the nucleation layer, wherein the semiconductor layer sequence is selectively grown from the planar region such that a growth of the semiconductor layer sequence on surfaces of the three-dimensional surface structures is reduced or non-existent compared to a growth on the planar region, and wherein a selectivity of the growth of the semiconductor layer sequence on the planar region is targetedly adjusted by an oxygen content of the nucleation layer.
摘要:
The semiconductor layer sequence includes an n-conductive layer, a p-conductive layer and an active zone located therebetween. The active zone comprises N quantum wells with N≧2. At a first working point (W1) at a first current density, the quantum wells have a first emission wavelength and, at a second working point (W2) at a second current density, a second emission wavelength. At least two of the first emission wavelengths differ from one another and at least some of the second emission wavelengths differ from the first emission wavelengths. The first current density is smaller than the second current density and the current densities differ from one another at least by a factor of 2.
摘要:
A reflective contact layer system and a method for forming a reflective contact layer system for an optoelectronic component are disclosed. In an embodiment the component includes a first p-doped nitride compound semiconductor layer, a transparent conductive oxide layer, a minor layer and a second p-doped nitride compound semiconductor layer arranged between the first p-doped nitride compound semiconductor layer and the transparent conductive oxide layer, wherein the second p-doped nitride compound semiconductor layer has N-face domains at an interface facing the transparent conductive oxide layer, and wherein the N-face domains at the interface have an area proportion of at least 95%.
摘要:
In an embodiment a method includes providing a growth substrate comprising a growth surface formed by a planar region having a plurality of three-dimensional surface structures on the planar region, directly applying a nucleation layer of oxygen-containing AlN to the growth surface and growing a nitride-based semiconductor layer sequence on the nucleation layer, wherein growing the semiconductor layer sequence includes selectively growing the semiconductor layer sequence upwards from the planar region such that a growth of the semiconductor layer sequence on surfaces of the three-dimensional surface structures is reduced or non-existent compared to a growth on the planar region, wherein the nucleation layer is applied onto both the planar region and the three-dimensional surface structures of the growth surface, and wherein a selectivity of the growth of the semiconductor layer sequence on the planar region is targetedly adjusted by an oxygen content of the nucleation layer.