Abstract:
In various embodiments, a backlighting device is provided. The backlighting device may include a plurality of semiconductor light sources arranged in a plane and serving for generating light radiation, and a side wall arranged laterally with respect to the semiconductor light sources, where the side wall is inclined with respect to the plane predefined by the semiconductor light sources, and wherein the side wall is retroreflective at a side which can be irradiated with light radiation of the semiconductor light sources.
Abstract:
In at least one embodiment of the method, said method includes the following steps: A) producing radiation-active islands (4) having a semiconductor layer sequence (3) on a growth substrate (2), wherein the islands (4) each comprise at least one active zone (33) of the semiconductor layer sequence (3), and an average diameter of the islands (4), as viewed in a top view of the growth substrate, amounts to between 50 nm and 10 μm inclusive, B) producing a separating layer (5) on a side of the islands (4) facing the growth substrate (2), wherein the separating layer (5) surrounds the islands (4) all around, as viewed in a top view of the growth substrate (2), C) attaching a carrier substrate (6) to a side of the islands (4) facing away from the growth substrate (2), and D) detaching the growth substrate (2) from the islands (4), wherein at least a part of the separating layer (5) is destroyed and/or at least temporarily softened during the detachment.
Abstract:
In various embodiments, a backlighting device is provided. The backlighting device may include a plurality of semiconductor light sources arranged in a plane and serving for generating light radiation, and a side wall arranged laterally with respect to the semiconductor light sources, where the side wall is inclined with respect to the plane predefined by the semiconductor light sources, and wherein the side wall is retroreflective at a side which can be irradiated with light radiation of the semiconductor light sources.
Abstract:
The invention relates to a method for measuring a light radiation (300) emitted by a light-emitting diode (210). In the method, an end (121) of an optical fiber (120) which is connected to a measuring device (130) is irradiated with the light radiation (300), which is emitted by the light-emitting diode (210), through an optical device (140), so that a portion of the light radiation (300) is coupled into the optical fiber (120) and is guided to the measuring device (130). The optical device (140) causes the light radiation (300) passing through the optical device (140) to be emitted in diffuse form in the direction of the end (121) of the optical fiber (120). The invention also relates to an apparatus (100) for measuring a light radiation (300) emitted by a light-emitting diode (210).
Abstract:
In at least one embodiment of the method, said method includes the following steps: A) producing radiation-active islands (4) having a semiconductor layer sequence (3) on a growth substrate (2), wherein the islands (4) each comprise at least one active zone (33) of the semiconductor layer sequence (3), and an average diameter of the islands (4), as viewed in a top view of the growth substrate, amounts to between 50 nm and 10 μm inclusive, B) producing a separating layer (5) on a side of the islands (4) facing the growth substrate (2), wherein the separating layer (5) surrounds the islands (4) all around, as viewed in a top view of the growth substrate (2), C) attaching a carrier substrate (6) to a side of the islands (4) facing away from the growth substrate (2), and D) detaching the growth substrate (2) from the islands (4), wherein at least a part of the separating layer (5) is destroyed and/or at least temporarily softened during the detachment.
Abstract:
The invention relates to a method for measuring a light radiation (300) emitted by a light-emitting diode (210). In the method, an end (121) of an optical fibre (120) which is connected to a measuring device (130) is irradiated with the light radiation (300), which is emitted by the light-emitting diode (210), through an optical device (140), so that a portion of the light radiation (300) is coupled into the optical fibre (120) and is guided to the measuring device (130). The optical device (140) causes the light radiation (300) passing through the optical device (140) to be emitted in diffuse form in the direction of the end (121) of the optical fibre (120). The invention also relates to an apparatus (100) for measuring a light radiation (300) emitted by a light-emitting diode (210).
Abstract:
An optoelectronic semiconductor component includes an optoelectronic semiconductor chip and an optical element. A connecting layer includes a transparent oxide arranged between the semiconductor chip and the optical element. The connecting layer directly adjoins the semiconductor chip and the optical element and fixes the optical element on the semiconductor chip. A method for fabricating an optoelectronic semiconductor component is furthermore specified.
Abstract:
An optoelectronic semiconductor component includes an optoelectronic semiconductor chip and an optical element. A connecting layer includes a transparent oxide arranged between the semiconductor chip and the optical element. The connecting layer directly adjoins the semiconductor chip and the optical element and fixes the optical element on the semiconductor chip. A method for fabricating an optoelectronic semiconductor component is furthermore specified.